Introduction to Exact Logic Circuit Synthesis

Kotaro MATSUOKA

Dec. 7th 2024

1/26

H CAEIT

o ¥ MiAHE (@nindanaoto)
o FUESKAFERZEBIEM LN FRLEEE RS R 7 4 3 — X ks 181308 2 F
o SR OWIFEE
o Jito T THERRIES 2 HINTEE T WS
o X a7 4 ¥y 7 ifififi (2020~) - BRI — R 7 FNA ¥ (2022~)
o SERYUEMTUNES (TFHE) Z# X T\ 5% (EFl:https://nindanaoto.github.io/
o HAFMRIZRITFEE DC1
o HIFEE: https://github.com/nindanaoto/DClproposal
o NHKZAmRa > 2019 B (HWITESR)
o 2019 FFEARIR — 87 Y T —X&
o JEHERI& IR G ERL:
https://github.com/virtualsecureplatform/MitouDocument

2/26

https://nindanaoto.github.io/
https://github.com/nindanaoto/DC1proposal
https://github.com/virtualsecureplatform/MitouDocument

Belgium Visit

Figure: &4 —/LH Figure: Leuven Town Hall

Figure: Iguanodon

3/26

What is Logic Synthesis?

@ Logic Synthesis is the generation of the logic circuit from a high-level description
o Hardware Design Language (HDL) is used to describe the circuit in high-level
o e.g. Verilog, VHDL, Chisel, SpinalHDL, Veryl, etc.
o Real circuits also require Place and Route (P&R) after this
@ Determine the position of gates in the real hardware
@ Modern Logic Synthesis can be divided into three phase
© Conversion to normal representations
o Most of the time this part is trivial
@ Minimization of normal representation
e Today's topic is a part of this
@ Technology Mapping
e Mapping the mathematical representation to actual physical entities like transistors

@ Exact Synthesis will appear in later two phases

4/26

Normal Representations

@ There are multiple well-known normal representations of Logic Circuit
@ Sum of Product (SOP)

@ Binary Decision Diagram (BDD)

© And-Inverter-Graph (AIG)

5/26

Normal Representations

@ There are multiple well-known normal representations of Logic Circuit

© Sum of Product (SOP)
o Also known as Disjunctive Normal Form(DNF, %5 5 ¥)

This is the most fundamental representation
The function is represented by AND of OR of some literals

@ eg. a,aAb,(anb)V(an—-cAd)
OR of AND version is POS or Conjunctive Normal Form (CNF, i = f2HEf)
This can be extended to Galois Field Elements

e Galos Field Sum of Product (GFSOP)
@ Some works use this to synthesize advanced circuits
e e.g.: Multi-valued quantum, reversible, CNT circuits

Pros: Easy to understand as a Boolean Algebra
Cons: Only two-layer one-output function is representable

@ Binary Decision Diagram (BDD)
@ And-Inverter-Graph (AIG)

5/26

Normal Representations

@ There are multiple well-known normal representations of Logic Circuit

@ Sum of Product (SOP)
@ Binary Decision Diagram (BDD)
e This is one of the most historical logic circuit representations

@ Shanon'’s first logic circuit representation is very similar to this

e More precisely, Zero suppressed BDD (ZDD) is the closest one
BDD is the tree of MUXs, all primary inputs are connected to only selectors of MUXs
o We can extend BDD to multi-output by partitioning primary inputs

@ Share some tree for shared inputs

e Pros: The minimization of BDD is easy to formalize as a mathematical problem

o Reduced Ordered BDD (ROBDD) is one of the well-known ways

o ROBDD is also usable as a canonical representation (Function equivalence)
Cons: Representation size of some common function can be exponential

o e.g.: Multiplication

o If we avoid ordered BDD, multiplication can be smaller

@ And-Inverter-Graph (AIG)

5/26

Normal Representations

@ There are multiple well-known normal representations of Logic Circuit

@ Sum of Product (SOP)
@ Binary Decision Diagram (BDD)
@ And-Inverter-Graph (AIG)
o This is currently the most common representation

o The standardized format is AIGER [1]
e The graph of AND gates and Inverters

o This is the complete set for any functions
Sometimes, we extend AlG to get a more compact representation
o eg. Xor-And-Graph (XAG) [2], Majority-Inverter-Graph (MIG) [3]
Pros: Almost direct representation of CMOS circuits
Cons: Minimization algorithm is highly non-trivial

5/26

AlIG minimization

@ Objective: Minimizing the size of AIG (the number of gates)
@ The most fundamental idea is Divide-and-Conquer
o Cutting AIG to small sub-AlG and applying some local optimization
e Sometimes called as Peephole Optimization
@ The extraction of sub-AlG is formalized as cut enumeration
o Enumerating subgraphs satisfying some suitable properties (e.g., Limited nodes,
inputs, outputs)
@ The Local minimization can be classified into three (AFAIK)
@ Converting into Other Formats
e SOP, BDD, etc.
e e.g., Quine - McCluskey Method, ESPRESSO [4]
@ Heursistic Method
o There are some heuristics like eliminating redundant nodes, matching with known
minimal circuits, etc.
o e.g. Transduction [5]

© Exact Synthesis

e Today's main topic
6/26

SAT-based Exact Synthesis

@ Exact Synthesis is the idea to directly treat minimization as NP hard problem
o Area optimal minimization is known as NP-hard [6]
e SATisfiability (SAT) is a famous NP-complete problem
o Historically known as the first NP-complete problem (Cook — Levin theorem) [7]
@ SAT-based Exact Synthesis encodes the problem into SAT

e Since SAT is NP-complete but the problem is NP-hard, we iteratively solve SAT
o Other NP-complete problem like Integer Linear Programming (ILP) [8] is another
possible option

7/26

SAT

@ SAT is the problem of finding the input assignment that makes the output true
e The circuit is given as CNF (POS)
o If the maximum number of literals for OR operation is k, called k-SAT
@ The parentheses with OR operations are called clause
o eg.: (mx1Vx)A(=x1Vx3)A(x1V —x2 V—x3) is 3-SAT problem
e Offtopic
o k-SAT — 3-SAT: Polynomial time reduction
3-SAT: NP-complete

2-SAT: Solvable in linear time
MAX 3-SAT: NP-hard

o MAX k-SAT is the optimization problem to find inputs that makes maximal clause
true.

MAX 2-SAT: NP-complete
o QUBO friendly representation

8/26

SAT solver

@ Because SAT is a well-known problem, we have a yearly competition
e The International SAT Competition at SAT Conference
https://satcompetition.github.io/
@ There are several famous SAT solvers
e MiniSAT: The ancestor of many SAT solvers
@ We rarely use this for practical cases, but it is easy to integrate
CaDiCAL [9]: Defact (not the best) standard of SAT solver
e Supporting Incremental SAT solving
CryptoMiniSat 1: The SAT solver for Crypto, supporting direct treatment of XOR
@ Supporting multi-core but parallelization in SAT will not help in general case
o Glucose: Used in ABC synthesis tool

@ | don’t know much but you can find the name in some ABC commands
Kissat [10]: The winner of the 2024 competition.
@ The author of CaDiCAL is developing this

9/26

"https://github.com/msoos/cryptominisat

https://satcompetition.github.io/
https://github.com/msoos/cryptominisat

Boolean Chain

@ To encode to SAT, we need to express the circuit as SAT-like formula
@ Boolean chain is originally introduced by Knuth [11]
@ Boolean chain is a DAG to represent the logic circuit.

e We can use this to represent any fixed-size boolean circuit

Ex. Full Adder

Carry Sum

Xg = X1 \ X2
X5 = X1 D Xp
X6 = X3 \ X5

X7 = X3 D X5

~ o~ o~ o~ o~ o~ o~
~— N N N N N N

xXg = X4 V Xg 5
(1) =7 6 oo
I(2) =8 7 ©.20)

Figure: From Fig. 1 in [12] 10/26

Possible Encoding

@ There are three main encodings in [12], SSV, MSV, DITT

o Single Selection Variable(SSV)
o Multiple Selection Variables (MSV)
o Distinct Input Truth Tables (DITT)

@ The difference between them is how we encode the connection between gates
e The selection variables

@ | will explain only MSV encoding
e Just because I'm using this for my research

11/26

Multiple Selection Variables Encoding (Variables)

@ Here, | define the variables used in MSV

@ n: The number of primary inputs (inputs to the circuit)
@ r: The number of gates in the circuit
Q xj,i€[0,n+r),j€[0,2"): The wire values

e i < nis primary inputs, and the rest are gates’ outputs
e j means the actual value of primary inputs encodes as binary intger

o xj=(j>>0&1fori<n
Q sjj,i €[0,r)j € [0,n+i): The selection variable.
o If x; is connected to gate /, s; is true, false otherwise.
Q fi,i €[0,r),j, k € B: The truth table of the gates
o If the gate i is true for inputs j, k, then fj, false otherwise
@ o0jj,i €[0,m),j € [0, r): The selection variables of the primary outputs
o If the i-th primary output is the output of j-th gate (x(j;n),.), 0j is true.

12/26

Multiple Selection Variables Encoding (Main Clause)

@ The main clause of this encoding for a two-input boolean gate is like this.?

1 1 1
/\ /\ /\ (.Z:,-j VS V (Xt @ a) V (Xjt ® b) V (Xt @ €) V (fipe ® 5)) (8)
a=0 b=0c=0
o If wire j, k are selected for the gate i, 5; \VV 5j becomes false.
o (xit @ a)V (xjt ®b) V (xkt ® c) will be 0 iff each value is a, b, ¢, respectively.
o (fipc ® 3 means the gate output equals to the output wire value.

@ We need some other constraints, but | omit that for today

o Constraints related to oj.
o Symmetry Breaking Terms [12]

13/26

2] guess that a can be removed

Strategy of SAT-based Exact Synthesis

@ This encoding gives the assignment for r gates’ circuit
e Not a minimum r, r is given parameter

@ Starting from r = 0, we increase r until we get the satisfiable assignment
o If there is no assignment, the SAT solver gives UNSAT as the result

@ We can make sure that r for the final answer is the exactly minimal one

14/26

Known Results: 5-input-1-output functions

e Famous theoretical result by Prof. Knuth [11] using SAT-based Exact Synthesis

@ Q: How many two-input gates are enough to implement 5-input-1-output
functions?

15/26

Known Results: 5-input-1-output functions

e Famous theoretical result by Prof. Knuth [11] using SAT-based Exact Synthesis
@ Q: How many two-input gates are enough to implement 5-input-1-output
functions?
o A: 12
@ Prof. Knuth solved most of the easy cases by heuristics and a few with exact
synthesis
o There is only one 5-input-1-output function that requires 12 gates
@ For any of these functions, we can provide the database of minimum circuits®

15/26

*https://gitlab.com/apgoucher/optimals

https://gitlab.com/apgoucher/optimal5

Known Results: IWLS2023

o In IWLS 2023, eSLIM [13] got second (third*) place for competition

e eSLIM is the SAT-based exact synthesis method
o eSLIM is developed by TU Wien Univ., Austria
e This competition is the one for the AIG minimization algorithm

Google)
40071 23815 33802 24847

Twawrs | w8

Figure: From https://www.iwls.org/contest/2023/iwls23-contest.pdf

16/26

*Prof. Alan's internal baseline was the real second place.

https://www.iwls.org/contest/2023/iwls23-contest.pdf

Coclusion

@ SAT-based Exact Synthesis is one of the logic circuit synthesis methods
e Finding exactly the minimum logical function

Empirically, the number of gates should be around 12 for practical synthesis [14]
What | missed today:
o Symmetry breaking terms [12]
@ Terms to reduce the search space without loss of generality
e Some heuristics
o Parital DAG [12], Fence [12], [15], Incremental solving [16]
o Cut enumeration algorithm [17], [18]
o Required to partition circuits into under 12 gates subcircuits.
@ Possible research directions:
e Speeding up SAT by Quantum computing
o Applying this to TFHE circuits (Submitted to DAC)

@ The advancement of synthesis is the foundation of today's society!
@ The best further reading: [12]

17/26

References
Reference |

[1]

2]

A. Biere, K. Heljanko, and S. Wieringa, “AIGER 1.9 and beyond,” en, Institute
for Formal Models and Verification, Johannes Kepler University, Altenbergerstr.
69, 4040 Linz, Austria, Tech. Rep. 11/2, Jul. 2011. [Online]. Available:
http://epub. jku.at/obvulioa/5973560 (visited on 12/06/2024).

S. Liu, H. Zhou, Y. Xia, L. Wang, and Z. Chu, “Logic Synthesis for XOR-AND
Graphs via Reed-Muller Representations,” in 2024 Conference of Science and
Technology for Integrated Circuits (CSTIC), Mar. 2024, pp. 1-3. DOT:
10.1109/CSTIC61820.2024.10532048.[Oane] Available:

https://ieeexplore.ieee.org/abstract/document/10532048 (visited on
08/28/2024).

18/26

http://epub.jku.at/obvulioa/5973560
https://doi.org/10.1109/CSTIC61820.2024.10532048
https://ieeexplore.ieee.org/abstract/document/10532048

References
Reference Il

[3] M. Soeken, L. G. Amaru, P.-E. Gaillardon, and G. De Micheli, “Exact Synthesis
of Majority-Inverter Graphs and Its Applications,” |EEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 36, no. 11,
pp. 1842-1855, Jan. 2017, Conference Name: |IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 1SSN: 1937-4151.
DOI:10.1109/TCAD.2017.2664059.[On“ne] Available:
https://ieeexplore.ieee.org/document/7842552 (visited on 08/29/2024).

[4] H. Kanakia, M. Nazemi, A. Fayyazi, and M. Pedram, “ESPRESSO-GPU:
Blazingly Fast Two-Level Logic Minimization,” in 2021 Design, Automation &
Test in Europe Conference & Exhibition (DATE), ISSN: 1558-1101, Feb. 2021,
pp. 1038-1043. DOI: 10.23919/DATE51398.2021.9473961. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9473961 (visited on
08/21/2024).

19/26

https://doi.org/10.1109/TCAD.2017.2664059
https://ieeexplore.ieee.org/document/7842552
https://doi.org/10.23919/DATE51398.2021.9473961
https://ieeexplore.ieee.org/abstract/document/9473961

References
Reference ||

[5] Y. Miyasaka, “Transduction Method for AIG Minimization,” in 2024 29th Asia
and South Pacific Design Automation Conference (ASP-DAC), ISSN:
2153-697X, Jan. 2024, pp. 398-403. DOT:
10.1109/ASP-DAC58780.2024.10473816. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/104738167casa_
token=zPRX1E_ZZsMAAAAA :utrA9Yht3UvNN1GwLTVRo510zbN7vpcql jCnSeF-
UfOPp6ILib2fKO_oCZLeoVkBOox0KsbhGOtb (visited on 11/02/2024).

[6] R. llango, B. Loff, and I. C. Oliveira, “NP-hardness of circuit minimization for
multi-output functions,” in Proceedings of the 35th Computational Complexity
Conference, ser. CCC '20, Dagstuhl, DEU: Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2020, pp. 1-36, 1SBN: 978-3-95977-156-6. DOI:
10.4230/LIPIcs.CCC.2020.22. [Online]. Available:
https://doi.org/10.4230/LIPIcs.CCC.2020.22 (visited on 11/01/2024),

20/26

https://doi.org/10.1109/ASP-DAC58780.2024.10473816
https://ieeexplore.ieee.org/abstract/document/10473816?casa_token=zPRX1E_ZZsMAAAAA:utrA9Yht3UvNNlGwLTVRo51OzbN7vpcqljCnSeF-Uf0Pp6ILib2fK0_oCZLeoVkB0oxOKsbhGOtb
https://ieeexplore.ieee.org/abstract/document/10473816?casa_token=zPRX1E_ZZsMAAAAA:utrA9Yht3UvNNlGwLTVRo51OzbN7vpcqljCnSeF-Uf0Pp6ILib2fK0_oCZLeoVkB0oxOKsbhGOtb
https://ieeexplore.ieee.org/abstract/document/10473816?casa_token=zPRX1E_ZZsMAAAAA:utrA9Yht3UvNNlGwLTVRo51OzbN7vpcqljCnSeF-Uf0Pp6ILib2fK0_oCZLeoVkB0oxOKsbhGOtb
https://doi.org/10.4230/LIPIcs.CCC.2020.22
https://doi.org/10.4230/LIPIcs.CCC.2020.22

References
Reference IV

[7] S. A. Cook, “The complexity of theorem-proving procedures,” in Proceedings of
the third annual ACM symposium on Theory of computing, ser. STOC '71, New
York, NY, USA: Association for Computing Machinery, 1971, pp. 151-158, 1SBN:
978-1-4503-7464-4. DOI: 10.1145/800157.805047. [Online]. Available:
https://dl.acm.org/doi/10.1145/800157.805047 (visited on 10/28/2024).

[8] A. Kojevnikov, A. S. Kulikov, and G. Yaroslavtsev, “Finding Efficient Circuits
Using SAT-Solvers,” en, in Theory and Applications of Satisfiability Testing -
SAT 2009, O. Kullmann, Ed., Berlin, Heidelberg: Springer, 2009, pp. 32-44,
ISBN: 978-3-642-02777-2. DOI: 10.1007/978-3-642-02777-2_5.

[9] A. Biere, T. Faller, K. Fazekas, M. Fleury, N. Froleyks, and F. Pollitt, “CaDiCalL
2.0," en, in Computer Aided Verification, A. Gurfinkel and V. Ganesh, Eds.,
Cham: Springer Nature Switzerland, 2024, pp. 133-152, ISBN:

978-3-031-65627-9. pOI1: 10.1007/978-3-031-65627-9_7.

21/26

https://doi.org/10.1145/800157.805047
https://dl.acm.org/doi/10.1145/800157.805047
https://doi.org/10.1007/978-3-642-02777-2_5
https://doi.org/10.1007/978-3-031-65627-9_7

References
Reference V

[10] A. Biere, T. Faller, K. Fazekas, M. Fleury, N. Froleyks, and F. Pollitt, “CaDiCaL,
Gimsatul, 1saSAT and Kissat Entering the SAT Competition 2024,” in Proc. of
SAT Competition 2024 — Solver, Benchmark and Proof Checker Descriptions,
M. Heule, M. Iser, M. Jarvisalo, and M. Suda, Eds., ser. Department of
Computer Science Report Series B, vol. B-2024-1, University of Helsinki, 2024,
pp. 8-10.

[11] D. E. Knuth and D. E. Knuth, Satisfiablility (The art of computer programming
/ Donald E. Knuth Volume 4, Fascicle 6), en, Printing with corrections. Boston
Columbus Indianapolis: Addison-Wesley, 2018, 1sBN: 978-0-13-439760-3.

22/26

References
Reference VI

[12] W. Haaswijk, M. Soeken, A. Mishchenko, and G. De Micheli, “SAT-Based Exact
Synthesis: Encodings, Topology Families, and Parallelism,” /EEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 39, no. 4,
pp. 871-884, Apr. 2020, Conference Name: IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 1SsN: 1937-4151.
DOI: 10.1109/TCAD.2019.2897703. [Online]. Available:
https://ieeexplore.ieee.org/document/8634910 (visited on 08/29/2024).

[13] F.-X. Reichl, F. Slivovsky, and S. Szeider, “eSLIM: Circuit Minimization with
SAT Based Local Improvement,” en, in
DROPS-IDN /v2/document/10.4230/LIPlcs.SAT.2024.23, Schloss Dagstuhl —
Leibniz-Zentrum fir Informatik, 2024. DOI: 10.4230/LIPIcs.SAT.2024.23.
[Online]. Available: https:
//drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2024.23

(visited on 08/28/2024).

23/26

https://doi.org/10.1109/TCAD.2019.2897703
https://ieeexplore.ieee.org/document/8634910
https://doi.org/10.4230/LIPIcs.SAT.2024.23
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2024.23
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2024.23

References
Reference VII

[14] A.S. Kulikov, D. Pechenev, and N. Slezkin, “SAT-Based Circuit Local
Improvement,” en, in
DROPS-IDN /v2/document/10.4230/LIPlcs. MFCS.2022.67, Schloss Dagstuhl —
Leibniz-Zentrum fir Informatik, 2022. DO1: 10.4230/LIPIcs.MFCS.2022.67.
[Online]. Available: https://drops.dagstuhl.de/entities/document/10.
4230/LIPIcs.MFCS.2022.67 (visited on 10/17/2024).

[15] L. Shang, S. Lu, S. Jung, and C. Pan, “Novel Fence Generation Methods for
Accelerating Reconfigurable Exact Synthesis,” in 2023 |IEEE 66th International
Midwest Symposium on Circuits and Systems (MWSCAS), ISSN: 1558-3899,
Aug. 2023, pp. 506-510. DO1: 10.1109/MWSCAS57524.2023.10405994.
[Online]. Available:
https://ieeexplore.ieee.org/abstract/document/10405994 (visited on

10/07/2024).
(0120

24 /26

https://doi.org/10.4230/LIPIcs.MFCS.2022.67
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.67
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.67
https://doi.org/10.1109/MWSCAS57524.2023.10405994
https://ieeexplore.ieee.org/abstract/document/10405994

References
Reference VIII

[16] S. Zou, J. Zhang, and G. Luo, “Incremental SAT-based Exact Synthesis,” in
Proceedings of the Great Lakes Symposium on VLS| 2024, ser. GLSVLSI '24,
New York, NY, USA: Association for Computing Machinery, 2024, pp. 158-163,
ISBN:9798400706059.D(H:10.1145/3649476.3658739.[On“ne] Available:
https://dl.acm.org/doi/10.1145/3649476.3658739 (visited on
10/15/2024).

[17] M. Yu, S. Carpov, A. Tempia Calvino, and G. De Micheli, “On the Synthesis of
High-performance Homomorphic Boolean Circuits,” in Proceedings of the 12th
Workshop on Encrypted Computing & Applied Homomorphic Cryptography,
ser. WAHC 24, New York, NY, USA: Association for Computing Machinery,
Nov. 2024, pp. 51-63, 1SBN: 9798400712418. DOI: 10.1145/3689945.3694803
[Online]. Available: https://dl.acm.org/doi/10.1145/3689945.3694803
(visited on 11/21/2024).

25 /26

https://doi.org/10.1145/3649476.3658739
https://dl.acm.org/doi/10.1145/3649476.3658739
https://doi.org/10.1145/3689945.3694803
https://dl.acm.org/doi/10.1145/3689945.3694803

References
Reference IX

[18] O. Martinello, F. S. Marques, R. P. Ribas, and A. |. Reis, “KL-Cuts: A new
approach for logic synthesis targeting multiple output blocks,” in 2010 Design,
Automation & Test in Europe Conference & Exhibition (DATE 2010), ISSN:
1558-1101, Mar. 2010, pp. 777-782. DOI: 10.1109/DATE.2010.5456946.

[Online]. Available: https://ieeexplore.ieee.org/document/5456946
(visited on 09/23/2024).

26 /26

https://doi.org/10.1109/DATE.2010.5456946
https://ieeexplore.ieee.org/document/5456946

	References

