
References

Introduction to Exact Logic Circuit Synthesis

Kotaro MATSUOKA

Dec. 7th 2024

1 / 26



References

自己紹介

松岡 航太郎 (@nindanaoto)
京都大学大学院情報学研究科通信情報システムコース 佐藤研究室 博士課程 2年

集積回路の研究室
端っこで準同型暗号を専門に生きている

セキュリティキャンプ 講師 (2020〜)・開発コースアドバイザ (2022〜)
完全準同型暗号 (TFHE)を教えている (資料:https://nindanaoto.github.io/

日本学術振興会特別研究員 DC1
申請書: https://github.com/nindanaoto/DC1proposal

NHK学生ロボコン 2019 優勝 (機械研究会)
2019年度未踏スーパクリエータ

応募資料&成果報告資料:
https://github.com/virtualsecureplatform/MitouDocument

2 / 26

https://nindanaoto.github.io/
https://github.com/nindanaoto/DC1proposal
https://github.com/virtualsecureplatform/MitouDocument


References

Belgium Visit

Figure: ムール貝 Figure: Leuven Town Hall

Figure: Iguanodon
3 / 26



References

What is Logic Synthesis?

Logic Synthesis is the generation of the logic circuit from a high-level description
Hardware Design Language (HDL) is used to describe the circuit in high-level

e.g. Verilog, VHDL, Chisel, SpinalHDL, Veryl, etc.
Real circuits also require Place and Route (P&R) after this

Determine the position of gates in the real hardware
Modern Logic Synthesis can be divided into three phase

1 Conversion to normal representations
Most of the time this part is trivial

2 Minimization of normal representation
Today’s topic is a part of this

3 Technology Mapping
Mapping the mathematical representation to actual physical entities like transistors

Exact Synthesis will appear in later two phases

4 / 26



References

Normal Representations

There are multiple well-known normal representations of Logic Circuit
1 Sum of Product (SOP)
2 Binary Decision Diagram (BDD)
3 And-Inverter-Graph (AIG)

5 / 26



References

Normal Representations
There are multiple well-known normal representations of Logic Circuit

1 Sum of Product (SOP)
Also known as Disjunctive Normal Form(DNF,選言標準形)
This is the most fundamental representation
The function is represented by AND of OR of some literals

eg. a, a ∧ b, (a ∧ b) ∨ (a ∧ ¬c ∧ d)
OR of AND version is POS or Conjunctive Normal Form (CNF,連言標準形)
This can be extended to Galois Field Elements

Galos Field Sum of Product (GFSOP)
Some works use this to synthesize advanced circuits
e.g.: Multi-valued quantum, reversible, CNT circuits

Pros: Easy to understand as a Boolean Algebra
Cons: Only two-layer one-output function is representable

2 Binary Decision Diagram (BDD)
3 And-Inverter-Graph (AIG)

5 / 26



References

Normal Representations
There are multiple well-known normal representations of Logic Circuit

1 Sum of Product (SOP)
2 Binary Decision Diagram (BDD)

This is one of the most historical logic circuit representations
Shanon’s first logic circuit representation is very similar to this
More precisely, Zero suppressed BDD (ZDD) is the closest one

BDD is the tree of MUXs, all primary inputs are connected to only selectors of MUXs
We can extend BDD to multi-output by partitioning primary inputs

Share some tree for shared inputs
Pros: The minimization of BDD is easy to formalize as a mathematical problem

Reduced Ordered BDD (ROBDD) is one of the well-known ways
ROBDD is also usable as a canonical representation (Function equivalence)

Cons: Representation size of some common function can be exponential
e.g.: Multiplication
If we avoid ordered BDD, multiplication can be smaller

3 And-Inverter-Graph (AIG)
5 / 26



References

Normal Representations

There are multiple well-known normal representations of Logic Circuit
1 Sum of Product (SOP)
2 Binary Decision Diagram (BDD)
3 And-Inverter-Graph (AIG)

This is currently the most common representation
The standardized format is AIGER [1]
The graph of AND gates and Inverters

This is the complete set for any functions
Sometimes, we extend AIG to get a more compact representation

eg. Xor-And-Graph (XAG) [2], Majority-Inverter-Graph (MIG) [3]
Pros: Almost direct representation of CMOS circuits
Cons: Minimization algorithm is highly non-trivial

5 / 26



References

AIG minimization
Objective: Minimizing the size of AIG (the number of gates)
The most fundamental idea is Divide-and-Conquer

Cutting AIG to small sub-AIG and applying some local optimization
Sometimes called as Peephole Optimization

The extraction of sub-AIG is formalized as cut enumeration
Enumerating subgraphs satisfying some suitable properties (e.g., Limited nodes,
inputs, outputs)

The Local minimization can be classified into three (AFAIK)
1 Converting into Other Formats

SOP, BDD, etc.
e.g., Quine –McCluskey Method, ESPRESSO [4]

2 Heursistic Method
There are some heuristics like eliminating redundant nodes, matching with known
minimal circuits, etc.
e.g. Transduction [5]

3 Exact Synthesis
Today’s main topic

6 / 26



References

SAT-based Exact Synthesis

Exact Synthesis is the idea to directly treat minimization as NP hard problem
Area optimal minimization is known as NP-hard [6]

SATisfiability (SAT) is a famous NP-complete problem
Historically known as the first NP-complete problem (Cook – Levin theorem) [7]

SAT-based Exact Synthesis encodes the problem into SAT
Since SAT is NP-complete but the problem is NP-hard, we iteratively solve SAT
Other NP-complete problem like Integer Linear Programming (ILP) [8] is another
possible option

7 / 26



References

SAT

SAT is the problem of finding the input assignment that makes the output true
The circuit is given as CNF (POS)
If the maximum number of literals for OR operation is k, called k-SAT

The parentheses with OR operations are called clause
e.g.: (¬x1 ∨ x2) ∧ (¬x1 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3) is 3-SAT problem

Offtopic
k-SAT → 3-SAT: Polynomial time reduction
3-SAT: NP-complete
2-SAT: Solvable in linear time
MAX 3-SAT: NP-hard

MAX k-SAT is the optimization problem to find inputs that makes maximal clause
true.

MAX 2-SAT: NP-complete
QUBO friendly representation

8 / 26



References

SAT solver

Because SAT is a well-known problem, we have a yearly competition
The International SAT Competition at SAT Conference
https://satcompetition.github.io/

There are several famous SAT solvers
MiniSAT: The ancestor of many SAT solvers

We rarely use this for practical cases, but it is easy to integrate
CaDiCAL [9]: Defact (not the best) standard of SAT solver

Supporting Incremental SAT solving
CryptoMiniSat 1: The SAT solver for Crypto, supporting direct treatment of XOR

Supporting multi-core but parallelization in SAT will not help in general case
Glucose: Used in ABC synthesis tool

I don’t know much but you can find the name in some ABC commands
Kissat [10]: The winner of the 2024 competition.

The author of CaDiCAL is developing this

1https://github.com/msoos/cryptominisat
9 / 26

https://satcompetition.github.io/
https://github.com/msoos/cryptominisat


References

Boolean Chain
To encode to SAT, we need to express the circuit as SAT-like formula
Boolean chain is originally introduced by Knuth [11]
Boolean chain is a DAG to represent the logic circuit.

We can use this to represent any fixed-size boolean circuit
Ex. Full Adder

x4 = x1 ∧ x2 (1)
x5 = x1 ⊕ x6 (2)
x6 = x3 ∧ x5 (3)
x7 = x3 ⊕ x5 (4)
x8 = x4 ∨ x6 (5)

l(1) = 7 (6)
l(2) = 8 (7)

‘

Figure: From Fig. 1 in [12] 10 / 26



References

Possible Encoding

There are three main encodings in [12], SSV, MSV, DITT
Single Selection Variable(SSV)
Multiple Selection Variables (MSV)
Distinct Input Truth Tables (DITT)

The difference between them is how we encode the connection between gates
The selection variables

I will explain only MSV encoding
Just because I’m using this for my research

11 / 26



References

Multiple Selection Variables Encoding (Variables)

Here, I define the variables used in MSV
1 n: The number of primary inputs (inputs to the circuit)
2 r : The number of gates in the circuit
3 xij , i ∈ [0, n + r), j ∈ [0, 2n): The wire values

i < n is primary inputs, and the rest are gates’ outputs
j means the actual value of primary inputs encodes as binary intger

xij = (j >> i)&1 for i < n
4 sij , i ∈ [0, r)j ∈ [0, n + i): The selection variable.

If xj is connected to gate i , sij is true, false otherwise.
5 fijk , i ∈ [0, r), j, k ∈ B: The truth table of the gates

If the gate i is true for inputs j, k, then fijk , false otherwise
6 oij , i ∈ [0,m), j ∈ [0, r): The selection variables of the primary outputs

If the i-th primary output is the output of j-th gate (x(j+n),:), oij is true.

12 / 26



References

Multiple Selection Variables Encoding (Main Clause)

The main clause of this encoding for a two-input boolean gate is like this.2

1∧
a=0

1∧
b=0

1∧
c=0

(
s̄ij ∨ s̄ik ∨ (xit ⊕ a) ∨ (xjt ⊕ b) ∨ (xkt ⊕ c) ∨ (fibc ⊕ ā)

)
(8)

If wire j, k are selected for the gate i , s̄ij ∨ s̄ik becomes false.
(xit ⊕ a) ∨ (xjt ⊕ b) ∨ (xkt ⊕ c) will be 0 iff each value is a, b, c, respectively.
(fibc ⊕ ā means the gate output equals to the output wire value.
We need some other constraints, but I omit that for today

Constraints related to oij .
Symmetry Breaking Terms [12]

2I guess that a can be removed
13 / 26



References

Strategy of SAT-based Exact Synthesis

This encoding gives the assignment for r gates’ circuit
Not a minimum r , r is given parameter

Starting from r = 0, we increase r until we get the satisfiable assignment
If there is no assignment, the SAT solver gives UNSAT as the result

We can make sure that r for the final answer is the exactly minimal one

14 / 26



References

Known Results: 5-input-1-output functions

Famous theoretical result by Prof. Knuth [11] using SAT-based Exact Synthesis
Q: How many two-input gates are enough to implement 5-input-1-output
functions?

15 / 26



References

Known Results: 5-input-1-output functions

Famous theoretical result by Prof. Knuth [11] using SAT-based Exact Synthesis
Q: How many two-input gates are enough to implement 5-input-1-output
functions?
A: 12
Prof. Knuth solved most of the easy cases by heuristics and a few with exact
synthesis

There is only one 5-input-1-output function that requires 12 gates
For any of these functions, we can provide the database of minimum circuits3

3https://gitlab.com/apgoucher/optimal5
15 / 26

https://gitlab.com/apgoucher/optimal5


References

Known Results: IWLS2023

In IWLS 2023, eSLIM [13] got second (third4) place for competition
eSLIM is the SAT-based exact synthesis method
eSLIM is developed by TU Wien Univ., Austria
This competition is the one for the AIG minimization algorithm

Figure: From https://www.iwls.org/contest/2023/iwls23-contest.pdf

4Prof. Alan’s internal baseline was the real second place.
16 / 26

https://www.iwls.org/contest/2023/iwls23-contest.pdf


References

Coclusion
SAT-based Exact Synthesis is one of the logic circuit synthesis methods

Finding exactly the minimum logical function
Empirically, the number of gates should be around 12 for practical synthesis [14]
What I missed today:

Symmetry breaking terms [12]
Terms to reduce the search space without loss of generality

Some heuristics
Parital DAG [12], Fence [12], [15], Incremental solving [16]

Cut enumeration algorithm [17], [18]
Required to partition circuits into under 12 gates subcircuits.

Possible research directions:
Speeding up SAT by Quantum computing
Applying this to TFHE circuits (Submitted to DAC)

The advancement of synthesis is the foundation of today’s society!
The best further reading: [12]

17 / 26



References

Reference I

[1] A. Biere, K. Heljanko, and S. Wieringa, “AIGER 1.9 and beyond,” en, Institute
for Formal Models and Verification, Johannes Kepler University, Altenbergerstr.
69, 4040 Linz, Austria, Tech. Rep. 11/2, Jul. 2011. [Online]. Available:
http://epub.jku.at/obvulioa/5973560 (visited on 12/06/2024).

[2] S. Liu, H. Zhou, Y. Xia, L. Wang, and Z. Chu, “Logic Synthesis for XOR-AND
Graphs via Reed-Muller Representations,” in 2024 Conference of Science and
Technology for Integrated Circuits (CSTIC), Mar. 2024, pp. 1–3. doi:
10.1109/CSTIC61820.2024.10532048. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/10532048 (visited on
08/28/2024).

18 / 26

http://epub.jku.at/obvulioa/5973560
https://doi.org/10.1109/CSTIC61820.2024.10532048
https://ieeexplore.ieee.org/abstract/document/10532048


References

Reference II

[3] M. Soeken, L. G. Amarù, P.-E. Gaillardon, and G. De Micheli, “Exact Synthesis
of Majority-Inverter Graphs and Its Applications,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 36, no. 11,
pp. 1842–1855, Jan. 2017, Conference Name: IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, issn: 1937-4151.
doi: 10.1109/TCAD.2017.2664059. [Online]. Available:
https://ieeexplore.ieee.org/document/7842552 (visited on 08/29/2024).

[4] H. Kanakia, M. Nazemi, A. Fayyazi, and M. Pedram, “ESPRESSO-GPU:
Blazingly Fast Two-Level Logic Minimization,” in 2021 Design, Automation &
Test in Europe Conference & Exhibition (DATE), ISSN: 1558-1101, Feb. 2021,
pp. 1038–1043. doi: 10.23919/DATE51398.2021.9473961. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9473961 (visited on
08/21/2024).

19 / 26

https://doi.org/10.1109/TCAD.2017.2664059
https://ieeexplore.ieee.org/document/7842552
https://doi.org/10.23919/DATE51398.2021.9473961
https://ieeexplore.ieee.org/abstract/document/9473961


References

Reference III

[5] Y. Miyasaka, “Transduction Method for AIG Minimization,” in 2024 29th Asia
and South Pacific Design Automation Conference (ASP-DAC), ISSN:
2153-697X, Jan. 2024, pp. 398–403. doi:
10.1109/ASP-DAC58780.2024.10473816. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/10473816?casa_
token=zPRX1E_ZZsMAAAAA:utrA9Yht3UvNNlGwLTVRo51OzbN7vpcqljCnSeF-
Uf0Pp6ILib2fK0_oCZLeoVkB0oxOKsbhGOtb (visited on 11/02/2024).

[6] R. Ilango, B. Loff, and I. C. Oliveira, “NP-hardness of circuit minimization for
multi-output functions,” in Proceedings of the 35th Computational Complexity
Conference, ser. CCC ’20, Dagstuhl, DEU: Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2020, pp. 1–36, isbn: 978-3-95977-156-6. doi:
10.4230/LIPIcs.CCC.2020.22. [Online]. Available:
https://doi.org/10.4230/LIPIcs.CCC.2020.22 (visited on 11/01/2024).

20 / 26

https://doi.org/10.1109/ASP-DAC58780.2024.10473816
https://ieeexplore.ieee.org/abstract/document/10473816?casa_token=zPRX1E_ZZsMAAAAA:utrA9Yht3UvNNlGwLTVRo51OzbN7vpcqljCnSeF-Uf0Pp6ILib2fK0_oCZLeoVkB0oxOKsbhGOtb
https://ieeexplore.ieee.org/abstract/document/10473816?casa_token=zPRX1E_ZZsMAAAAA:utrA9Yht3UvNNlGwLTVRo51OzbN7vpcqljCnSeF-Uf0Pp6ILib2fK0_oCZLeoVkB0oxOKsbhGOtb
https://ieeexplore.ieee.org/abstract/document/10473816?casa_token=zPRX1E_ZZsMAAAAA:utrA9Yht3UvNNlGwLTVRo51OzbN7vpcqljCnSeF-Uf0Pp6ILib2fK0_oCZLeoVkB0oxOKsbhGOtb
https://doi.org/10.4230/LIPIcs.CCC.2020.22
https://doi.org/10.4230/LIPIcs.CCC.2020.22


References

Reference IV

[7] S. A. Cook, “The complexity of theorem-proving procedures,” in Proceedings of
the third annual ACM symposium on Theory of computing, ser. STOC ’71, New
York, NY, USA: Association for Computing Machinery, 1971, pp. 151–158, isbn:
978-1-4503-7464-4. doi: 10.1145/800157.805047. [Online]. Available:
https://dl.acm.org/doi/10.1145/800157.805047 (visited on 10/28/2024).

[8] A. Kojevnikov, A. S. Kulikov, and G. Yaroslavtsev, “Finding Efficient Circuits
Using SAT-Solvers,” en, in Theory and Applications of Satisfiability Testing -
SAT 2009, O. Kullmann, Ed., Berlin, Heidelberg: Springer, 2009, pp. 32–44,
isbn: 978-3-642-02777-2. doi: 10.1007/978-3-642-02777-2_5.

[9] A. Biere, T. Faller, K. Fazekas, M. Fleury, N. Froleyks, and F. Pollitt, “CaDiCaL
2.0,” en, in Computer Aided Verification, A. Gurfinkel and V. Ganesh, Eds.,
Cham: Springer Nature Switzerland, 2024, pp. 133–152, isbn:
978-3-031-65627-9. doi: 10.1007/978-3-031-65627-9_7.

21 / 26

https://doi.org/10.1145/800157.805047
https://dl.acm.org/doi/10.1145/800157.805047
https://doi.org/10.1007/978-3-642-02777-2_5
https://doi.org/10.1007/978-3-031-65627-9_7


References

Reference V

[10] A. Biere, T. Faller, K. Fazekas, M. Fleury, N. Froleyks, and F. Pollitt, “CaDiCaL,
Gimsatul, IsaSAT and Kissat Entering the SAT Competition 2024,” in Proc. of
SAT Competition 2024 – Solver, Benchmark and Proof Checker Descriptions,
M. Heule, M. Iser, M. Järvisalo, and M. Suda, Eds., ser. Department of
Computer Science Report Series B, vol. B-2024-1, University of Helsinki, 2024,
pp. 8–10.

[11] D. E. Knuth and D. E. Knuth, Satisfiablility (The art of computer programming
/ Donald E. Knuth Volume 4, Fascicle 6), en, Printing with corrections. Boston
Columbus Indianapolis: Addison-Wesley, 2018, isbn: 978-0-13-439760-3.

22 / 26



References

Reference VI

[12] W. Haaswijk, M. Soeken, A. Mishchenko, and G. De Micheli, “SAT-Based Exact
Synthesis: Encodings, Topology Families, and Parallelism,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 39, no. 4,
pp. 871–884, Apr. 2020, Conference Name: IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, issn: 1937-4151.
doi: 10.1109/TCAD.2019.2897703. [Online]. Available:
https://ieeexplore.ieee.org/document/8634910 (visited on 08/29/2024).

[13] F.-X. Reichl, F. Slivovsky, and S. Szeider, “eSLIM: Circuit Minimization with
SAT Based Local Improvement,” en, in
DROPS-IDN/v2/document/10.4230/LIPIcs.SAT.2024.23, Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2024. doi: 10.4230/LIPIcs.SAT.2024.23.
[Online]. Available: https:
//drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2024.23
(visited on 08/28/2024).

23 / 26

https://doi.org/10.1109/TCAD.2019.2897703
https://ieeexplore.ieee.org/document/8634910
https://doi.org/10.4230/LIPIcs.SAT.2024.23
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2024.23
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2024.23


References

Reference VII

[14] A. S. Kulikov, D. Pechenev, and N. Slezkin, “SAT-Based Circuit Local
Improvement,” en, in
DROPS-IDN/v2/document/10.4230/LIPIcs.MFCS.2022.67, Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2022. doi: 10.4230/LIPIcs.MFCS.2022.67.
[Online]. Available: https://drops.dagstuhl.de/entities/document/10.
4230/LIPIcs.MFCS.2022.67 (visited on 10/17/2024).

[15] L. Shang, S. Lu, S. Jung, and C. Pan, “Novel Fence Generation Methods for
Accelerating Reconfigurable Exact Synthesis,” in 2023 IEEE 66th International
Midwest Symposium on Circuits and Systems (MWSCAS), ISSN: 1558-3899,
Aug. 2023, pp. 506–510. doi: 10.1109/MWSCAS57524.2023.10405994.
[Online]. Available:
https://ieeexplore.ieee.org/abstract/document/10405994 (visited on
10/07/2024).

24 / 26

https://doi.org/10.4230/LIPIcs.MFCS.2022.67
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.67
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.67
https://doi.org/10.1109/MWSCAS57524.2023.10405994
https://ieeexplore.ieee.org/abstract/document/10405994


References

Reference VIII

[16] S. Zou, J. Zhang, and G. Luo, “Incremental SAT-based Exact Synthesis,” in
Proceedings of the Great Lakes Symposium on VLSI 2024, ser. GLSVLSI ’24,
New York, NY, USA: Association for Computing Machinery, 2024, pp. 158–163,
isbn: 9798400706059. doi: 10.1145/3649476.3658739. [Online]. Available:
https://dl.acm.org/doi/10.1145/3649476.3658739 (visited on
10/15/2024).

[17] M. Yu, S. Carpov, A. Tempia Calvino, and G. De Micheli, “On the Synthesis of
High-performance Homomorphic Boolean Circuits,” in Proceedings of the 12th
Workshop on Encrypted Computing & Applied Homomorphic Cryptography,
ser. WAHC ’24, New York, NY, USA: Association for Computing Machinery,
Nov. 2024, pp. 51–63, isbn: 9798400712418. doi: 10.1145/3689945.3694803.
[Online]. Available: https://dl.acm.org/doi/10.1145/3689945.3694803
(visited on 11/21/2024).

25 / 26

https://doi.org/10.1145/3649476.3658739
https://dl.acm.org/doi/10.1145/3649476.3658739
https://doi.org/10.1145/3689945.3694803
https://dl.acm.org/doi/10.1145/3689945.3694803


References

Reference IX

[18] O. Martinello, F. S. Marques, R. P. Ribas, and A. I. Reis, “KL-Cuts: A new
approach for logic synthesis targeting multiple output blocks,” in 2010 Design,
Automation & Test in Europe Conference & Exhibition (DATE 2010), ISSN:
1558-1101, Mar. 2010, pp. 777–782. doi: 10.1109/DATE.2010.5456946.
[Online]. Available: https://ieeexplore.ieee.org/document/5456946
(visited on 09/23/2024).

26 / 26

https://doi.org/10.1109/DATE.2010.5456946
https://ieeexplore.ieee.org/document/5456946

	References

