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What is Logic Synthesis?

@ Logic Synthesis is the generation of the logic circuit from a high-level description
o Hardware Design Language (HDL) is used to describe the circuit in high-level
o e.g. Verilog, VHDL, Chisel, SpinalHDL, Veryl, etc.
o Real circuits also require Place and Route (P&R) after this
@ Determine the position of gates in the real hardware
@ Modern Logic Synthesis can be divided into three phase
© Conversion to normal representations
o Most of the time this part is trivial
@ Minimization of normal representation
e Today's topic is a part of this
@ Technology Mapping
e Mapping the mathematical representation to actual physical entities like transistors

@ Exact Synthesis will appear in later two phases
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Normal Representations

@ There are multiple well-known normal representations of Logic Circuit
@ Sum of Product (SOP)

@ Binary Decision Diagram (BDD)

© And-Inverter-Graph (AIG)
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Normal Representations

@ There are multiple well-known normal representations of Logic Circuit

© Sum of Product (SOP)
o Also known as Disjunctive Normal Form(DNF, %5 5 ¥)

This is the most fundamental representation
The function is represented by AND of OR of some literals

@ eg. a,aAb,(anb)V(an—-cAd)
OR of AND version is POS or Conjunctive Normal Form (CNF, i = f2HEf)
This can be extended to Galois Field Elements

e Galos Field Sum of Product (GFSOP)
@ Some works use this to synthesize advanced circuits
e e.g.: Multi-valued quantum, reversible, CNT circuits

Pros: Easy to understand as a Boolean Algebra
Cons: Only two-layer one-output function is representable

@ Binary Decision Diagram (BDD)
@ And-Inverter-Graph (AIG)
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Normal Representations

@ There are multiple well-known normal representations of Logic Circuit

@ Sum of Product (SOP)
@ Binary Decision Diagram (BDD)
e This is one of the most historical logic circuit representations

@ Shanon'’s first logic circuit representation is very similar to this

e More precisely, Zero suppressed BDD (ZDD) is the closest one
BDD is the tree of MUXs, all primary inputs are connected to only selectors of MUXs
o We can extend BDD to multi-output by partitioning primary inputs

@ Share some tree for shared inputs

e Pros: The minimization of BDD is easy to formalize as a mathematical problem

o Reduced Ordered BDD (ROBDD) is one of the well-known ways

o ROBDD is also usable as a canonical representation (Function equivalence)
Cons: Representation size of some common function can be exponential

o e.g.: Multiplication

o If we avoid ordered BDD, multiplication can be smaller

@ And-Inverter-Graph (AIG)
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Normal Representations

@ There are multiple well-known normal representations of Logic Circuit

@ Sum of Product (SOP)
@ Binary Decision Diagram (BDD)
@ And-Inverter-Graph (AIG)
o This is currently the most common representation

o The standardized format is AIGER [1]
e The graph of AND gates and Inverters

o This is the complete set for any functions
Sometimes, we extend AlG to get a more compact representation
o eg. Xor-And-Graph (XAG) [2], Majority-Inverter-Graph (MIG) [3]
Pros: Almost direct representation of CMOS circuits
Cons: Minimization algorithm is highly non-trivial
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AlIG minimization

@ Objective: Minimizing the size of AIG (the number of gates)
@ The most fundamental idea is Divide-and-Conquer
o Cutting AIG to small sub-AlG and applying some local optimization
e Sometimes called as Peephole Optimization
@ The extraction of sub-AlG is formalized as cut enumeration
o Enumerating subgraphs satisfying some suitable properties (e.g., Limited nodes,
inputs, outputs)
@ The Local minimization can be classified into three (AFAIK)
@ Converting into Other Formats
e SOP, BDD, etc.
e e.g., Quine - McCluskey Method, ESPRESSO [4]
@ Heursistic Method
o There are some heuristics like eliminating redundant nodes, matching with known
minimal circuits, etc.
o e.g. Transduction [5]

© Exact Synthesis

e Today's main topic
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SAT-based Exact Synthesis

@ Exact Synthesis is the idea to directly treat minimization as NP hard problem
o Area optimal minimization is known as NP-hard [6]
e SATisfiability (SAT) is a famous NP-complete problem
o Historically known as the first NP-complete problem (Cook — Levin theorem) [7]
@ SAT-based Exact Synthesis encodes the problem into SAT

e Since SAT is NP-complete but the problem is NP-hard, we iteratively solve SAT
o Other NP-complete problem like Integer Linear Programming (ILP) [8] is another
possible option
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SAT

@ SAT is the problem of finding the input assignment that makes the output true
e The circuit is given as CNF (POS)
o If the maximum number of literals for OR operation is k, called k-SAT
@ The parentheses with OR operations are called clause
o eg.: (mx1Vx)A(=x1Vx3)A(x1V —x2 V—x3) is 3-SAT problem
e Offtopic
o k-SAT — 3-SAT: Polynomial time reduction
3-SAT: NP-complete

2-SAT: Solvable in linear time
MAX 3-SAT: NP-hard

o MAX k-SAT is the optimization problem to find inputs that makes maximal clause
true.

MAX 2-SAT: NP-complete
o QUBO friendly representation
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SAT solver

@ Because SAT is a well-known problem, we have a yearly competition
e The International SAT Competition at SAT Conference
https://satcompetition.github.io/
@ There are several famous SAT solvers
e MiniSAT: The ancestor of many SAT solvers
@ We rarely use this for practical cases, but it is easy to integrate
CaDiCAL [9]: Defact (not the best) standard of SAT solver
e Supporting Incremental SAT solving
CryptoMiniSat 1: The SAT solver for Crypto, supporting direct treatment of XOR
@ Supporting multi-core but parallelization in SAT will not help in general case
o Glucose: Used in ABC synthesis tool

@ | don’t know much but you can find the name in some ABC commands
Kissat [10]: The winner of the 2024 competition.
@ The author of CaDiCAL is developing this
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Boolean Chain

@ To encode to SAT, we need to express the circuit as SAT-like formula
@ Boolean chain is originally introduced by Knuth [11]
@ Boolean chain is a DAG to represent the logic circuit.

e We can use this to represent any fixed-size boolean circuit

Ex. Full Adder

Carry  Sum

Xg = X1 \ X2
X5 = X1 D Xp
X6 = X3 \ X5

X7 = X3 D X5

~ o~ o~ o~ o~ o~ o~
~— N N N N N N

xXg = X4 V Xg 5
(1) =7 6 oo
I(2) =8 7 ©.20)

Figure: From Fig. 1 in [12] 10/26



Possible Encoding

@ There are three main encodings in [12], SSV, MSV, DITT

o Single Selection Variable(SSV)
o Multiple Selection Variables (MSV)
o Distinct Input Truth Tables (DITT)

@ The difference between them is how we encode the connection between gates
e The selection variables

@ | will explain only MSV encoding
e Just because I'm using this for my research
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Multiple Selection Variables Encoding (Variables)

@ Here, | define the variables used in MSV

@ n: The number of primary inputs (inputs to the circuit)
@ r: The number of gates in the circuit
Q xj,i€[0,n+r),j€[0,2"): The wire values

e i < nis primary inputs, and the rest are gates’ outputs
e j means the actual value of primary inputs encodes as binary intger

o xj=(j>>0&1fori<n
Q sjj,i €[0,r)j € [0,n+i): The selection variable.
o If x; is connected to gate /, s; is true, false otherwise.
Q fi,i €[0,r),j, k € B: The truth table of the gates
o If the gate i is true for inputs j, k, then fj, false otherwise
@ o0jj,i €[0,m),j € [0, r): The selection variables of the primary outputs
o If the i-th primary output is the output of j-th gate (x(j;n),.), 0j is true.
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Multiple Selection Variables Encoding (Main Clause)

@ The main clause of this encoding for a two-input boolean gate is like this.?

1 1 1
/\ /\ /\ (.Z:,-j VS V (Xt @ a) V (Xjt ® b) V (Xt @ €) V (fipe ® 5)) (8)
a=0 b=0c=0
o If wire j, k are selected for the gate i, 5; \VV 5j becomes false.
o (xit @ a)V (xjt ®b) V (xkt ® c) will be 0 iff each value is a, b, ¢, respectively.
o (fipc ® 3 means the gate output equals to the output wire value.

@ We need some other constraints, but | omit that for today

o Constraints related to oj.
o Symmetry Breaking Terms [12]
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Strategy of SAT-based Exact Synthesis

@ This encoding gives the assignment for r gates’ circuit
e Not a minimum r, r is given parameter

@ Starting from r = 0, we increase r until we get the satisfiable assignment
o If there is no assignment, the SAT solver gives UNSAT as the result

@ We can make sure that r for the final answer is the exactly minimal one
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Known Results: 5-input-1-output functions

e Famous theoretical result by Prof. Knuth [11] using SAT-based Exact Synthesis

@ Q: How many two-input gates are enough to implement 5-input-1-output
functions?
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Known Results: 5-input-1-output functions

e Famous theoretical result by Prof. Knuth [11] using SAT-based Exact Synthesis
@ Q: How many two-input gates are enough to implement 5-input-1-output
functions?
o A: 12
@ Prof. Knuth solved most of the easy cases by heuristics and a few with exact
synthesis
o There is only one 5-input-1-output function that requires 12 gates
@ For any of these functions, we can provide the database of minimum circuits®
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Known Results: IWLS2023

o In IWLS 2023, eSLIM [13] got second (third*) place for competition

e eSLIM is the SAT-based exact synthesis method
o eSLIM is developed by TU Wien Univ., Austria
e This competition is the one for the AIG minimization algorithm

Google )
40071 23815 33802 24847

Twawrs | w8

Figure: From https://www.iwls.org/contest/2023/iwls23-contest.pdf

16/26

*Prof. Alan's internal baseline was the real second place.


https://www.iwls.org/contest/2023/iwls23-contest.pdf

Coclusion

@ SAT-based Exact Synthesis is one of the logic circuit synthesis methods
e Finding exactly the minimum logical function

Empirically, the number of gates should be around 12 for practical synthesis [14]
What | missed today:
o Symmetry breaking terms [12]
@ Terms to reduce the search space without loss of generality
e Some heuristics
o Parital DAG [12], Fence [12], [15], Incremental solving [16]
o Cut enumeration algorithm [17], [18]
o Required to partition circuits into under 12 gates subcircuits.
@ Possible research directions:
e Speeding up SAT by Quantum computing
o Applying this to TFHE circuits (Submitted to DAC)

@ The advancement of synthesis is the foundation of today's society!
@ The best further reading: [12]
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