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What is Logic Synthesis?

Logic Synthesis is the generation of the logic circuit from a high-level description
Hardware Design Language (HDL) is used to describe the circuit in high-level

e.g. Verilog, VHDL, Chisel, SpinalHDL, Veryl, etc.
Real circuits also require Place and Route (P&R) after this

Determine the position of gates in the real hardware
Modern Logic Synthesis can be divided into three phase

1 Conversion to normal representations
Most of the time this part is trivial

2 Minimization of normal representation
Today’s topic is a part of this

3 Technology Mapping
Mapping the mathematical representation to actual physical entities like transistors

Exact Synthesis will appear in later two phases
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Normal Representations

There are multiple well-known normal representations of Logic Circuit
1 Sum of Product (SOP)
2 Binary Decision Diagram (BDD)
3 And-Inverter-Graph (AIG)
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Normal Representations
There are multiple well-known normal representations of Logic Circuit

1 Sum of Product (SOP)
Also known as Disjunctive Normal Form(DNF,選言標準形)
This is the most fundamental representation
The function is represented by AND of OR of some literals

eg. a, a ∧ b, (a ∧ b) ∨ (a ∧ ¬c ∧ d)
OR of AND version is POS or Conjunctive Normal Form (CNF,連言標準形)
This can be extended to Galois Field Elements

Galos Field Sum of Product (GFSOP)
Some works use this to synthesize advanced circuits
e.g.: Multi-valued quantum, reversible, CNT circuits

Pros: Easy to understand as a Boolean Algebra
Cons: Only two-layer one-output function is representable

2 Binary Decision Diagram (BDD)
3 And-Inverter-Graph (AIG)
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Normal Representations
There are multiple well-known normal representations of Logic Circuit

1 Sum of Product (SOP)
2 Binary Decision Diagram (BDD)

This is one of the most historical logic circuit representations
Shanon’s first logic circuit representation is very similar to this
More precisely, Zero suppressed BDD (ZDD) is the closest one

BDD is the tree of MUXs, all primary inputs are connected to only selectors of MUXs
We can extend BDD to multi-output by partitioning primary inputs

Share some tree for shared inputs
Pros: The minimization of BDD is easy to formalize as a mathematical problem

Reduced Ordered BDD (ROBDD) is one of the well-known ways
ROBDD is also usable as a canonical representation (Function equivalence)

Cons: Representation size of some common function can be exponential
e.g.: Multiplication
If we avoid ordered BDD, multiplication can be smaller

3 And-Inverter-Graph (AIG)
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Normal Representations

There are multiple well-known normal representations of Logic Circuit
1 Sum of Product (SOP)
2 Binary Decision Diagram (BDD)
3 And-Inverter-Graph (AIG)

This is currently the most common representation
The standardized format is AIGER [1]
The graph of AND gates and Inverters

This is the complete set for any functions
Sometimes, we extend AIG to get a more compact representation

eg. Xor-And-Graph (XAG) [2], Majority-Inverter-Graph (MIG) [3]
Pros: Almost direct representation of CMOS circuits
Cons: Minimization algorithm is highly non-trivial
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AIG minimization
Objective: Minimizing the size of AIG (the number of gates)
The most fundamental idea is Divide-and-Conquer

Cutting AIG to small sub-AIG and applying some local optimization
Sometimes called as Peephole Optimization

The extraction of sub-AIG is formalized as cut enumeration
Enumerating subgraphs satisfying some suitable properties (e.g., Limited nodes,
inputs, outputs)

The Local minimization can be classified into three (AFAIK)
1 Converting into Other Formats

SOP, BDD, etc.
e.g., Quine –McCluskey Method, ESPRESSO [4]

2 Heursistic Method
There are some heuristics like eliminating redundant nodes, matching with known
minimal circuits, etc.
e.g. Transduction [5]

3 Exact Synthesis
Today’s main topic
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SAT-based Exact Synthesis

Exact Synthesis is the idea to directly treat minimization as NP hard problem
Area optimal minimization is known as NP-hard [6]

SATisfiability (SAT) is a famous NP-complete problem
Historically known as the first NP-complete problem (Cook – Levin theorem) [7]

SAT-based Exact Synthesis encodes the problem into SAT
Since SAT is NP-complete but the problem is NP-hard, we iteratively solve SAT
Other NP-complete problem like Integer Linear Programming (ILP) [8] is another
possible option
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SAT

SAT is the problem of finding the input assignment that makes the output true
The circuit is given as CNF (POS)
If the maximum number of literals for OR operation is k, called k-SAT

The parentheses with OR operations are called clause
e.g.: (¬x1 ∨ x2) ∧ (¬x1 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3) is 3-SAT problem

Offtopic
k-SAT → 3-SAT: Polynomial time reduction
3-SAT: NP-complete
2-SAT: Solvable in linear time
MAX 3-SAT: NP-hard

MAX k-SAT is the optimization problem to find inputs that makes maximal clause
true.

MAX 2-SAT: NP-complete
QUBO friendly representation
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SAT solver

Because SAT is a well-known problem, we have a yearly competition
The International SAT Competition at SAT Conference
https://satcompetition.github.io/

There are several famous SAT solvers
MiniSAT: The ancestor of many SAT solvers

We rarely use this for practical cases, but it is easy to integrate
CaDiCAL [9]: Defact (not the best) standard of SAT solver

Supporting Incremental SAT solving
CryptoMiniSat 1: The SAT solver for Crypto, supporting direct treatment of XOR

Supporting multi-core but parallelization in SAT will not help in general case
Glucose: Used in ABC synthesis tool

I don’t know much but you can find the name in some ABC commands
Kissat [10]: The winner of the 2024 competition.

The author of CaDiCAL is developing this

1https://github.com/msoos/cryptominisat
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Boolean Chain
To encode to SAT, we need to express the circuit as SAT-like formula
Boolean chain is originally introduced by Knuth [11]
Boolean chain is a DAG to represent the logic circuit.

We can use this to represent any fixed-size boolean circuit
Ex. Full Adder

x4 = x1 ∧ x2 (1)
x5 = x1 ⊕ x6 (2)
x6 = x3 ∧ x5 (3)
x7 = x3 ⊕ x5 (4)
x8 = x4 ∨ x6 (5)

l(1) = 7 (6)
l(2) = 8 (7)

‘

Figure: From Fig. 1 in [12] 10 / 26
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Possible Encoding

There are three main encodings in [12], SSV, MSV, DITT
Single Selection Variable(SSV)
Multiple Selection Variables (MSV)
Distinct Input Truth Tables (DITT)

The difference between them is how we encode the connection between gates
The selection variables

I will explain only MSV encoding
Just because I’m using this for my research
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Multiple Selection Variables Encoding (Variables)

Here, I define the variables used in MSV
1 n: The number of primary inputs (inputs to the circuit)
2 r : The number of gates in the circuit
3 xij , i ∈ [0, n + r), j ∈ [0, 2n): The wire values

i < n is primary inputs, and the rest are gates’ outputs
j means the actual value of primary inputs encodes as binary intger

xij = (j >> i)&1 for i < n
4 sij , i ∈ [0, r)j ∈ [0, n + i): The selection variable.

If xj is connected to gate i , sij is true, false otherwise.
5 fijk , i ∈ [0, r), j, k ∈ B: The truth table of the gates

If the gate i is true for inputs j, k, then fijk , false otherwise
6 oij , i ∈ [0,m), j ∈ [0, r): The selection variables of the primary outputs

If the i-th primary output is the output of j-th gate (x(j+n),:), oij is true.
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Multiple Selection Variables Encoding (Main Clause)

The main clause of this encoding for a two-input boolean gate is like this.2

1∧
a=0

1∧
b=0

1∧
c=0

(
s̄ij ∨ s̄ik ∨ (xit ⊕ a) ∨ (xjt ⊕ b) ∨ (xkt ⊕ c) ∨ (fibc ⊕ ā)

)
(8)

If wire j, k are selected for the gate i , s̄ij ∨ s̄ik becomes false.
(xit ⊕ a) ∨ (xjt ⊕ b) ∨ (xkt ⊕ c) will be 0 iff each value is a, b, c, respectively.
(fibc ⊕ ā means the gate output equals to the output wire value.
We need some other constraints, but I omit that for today

Constraints related to oij .
Symmetry Breaking Terms [12]

2I guess that a can be removed
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Strategy of SAT-based Exact Synthesis

This encoding gives the assignment for r gates’ circuit
Not a minimum r , r is given parameter

Starting from r = 0, we increase r until we get the satisfiable assignment
If there is no assignment, the SAT solver gives UNSAT as the result

We can make sure that r for the final answer is the exactly minimal one
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Known Results: 5-input-1-output functions

Famous theoretical result by Prof. Knuth [11] using SAT-based Exact Synthesis
Q: How many two-input gates are enough to implement 5-input-1-output
functions?
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Known Results: 5-input-1-output functions

Famous theoretical result by Prof. Knuth [11] using SAT-based Exact Synthesis
Q: How many two-input gates are enough to implement 5-input-1-output
functions?
A: 12
Prof. Knuth solved most of the easy cases by heuristics and a few with exact
synthesis

There is only one 5-input-1-output function that requires 12 gates
For any of these functions, we can provide the database of minimum circuits3

3https://gitlab.com/apgoucher/optimal5
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Known Results: IWLS2023

In IWLS 2023, eSLIM [13] got second (third4) place for competition
eSLIM is the SAT-based exact synthesis method
eSLIM is developed by TU Wien Univ., Austria
This competition is the one for the AIG minimization algorithm

Figure: From https://www.iwls.org/contest/2023/iwls23-contest.pdf

4Prof. Alan’s internal baseline was the real second place.
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Coclusion
SAT-based Exact Synthesis is one of the logic circuit synthesis methods

Finding exactly the minimum logical function
Empirically, the number of gates should be around 12 for practical synthesis [14]
What I missed today:

Symmetry breaking terms [12]
Terms to reduce the search space without loss of generality

Some heuristics
Parital DAG [12], Fence [12], [15], Incremental solving [16]

Cut enumeration algorithm [17], [18]
Required to partition circuits into under 12 gates subcircuits.

Possible research directions:
Speeding up SAT by Quantum computing
Applying this to TFHE circuits (Submitted to DAC)

The advancement of synthesis is the foundation of today’s society!
The best further reading: [12]
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