
Evaluating Boolean circuits over ciphertexts using Fully

Homomorphic Encryption over the Torus

Kotaro Matsuoka

Novembe/8/2022



Self Introduction

• Affiliation: 2nd grade Master’s student at

Kyoto University

• Certified as a ”super creator” at IPA’s MITOU

program 2019.

• Gave lectures about TFHE at IPA’s Security
Camp 2020-2022.

• Today’s talk based on this lecture.

• Won the NHK Robot Contest 2019.

Figure 1: One of the robots we made

in NHK Robot Contest.

https://nindanaoto.github.io/pdf/IMIKoen.pdf Kotaro Matsuoka 1/32

https://nindanaoto.github.io/pdf/IMIKoen.pdf


Introduction



Classification of HEs

• Homomorphic Encryption (HE) = A form of encryption that permits encrypted

data to be evaluated by arbitrary functions without decryption.

• Partially Homomorphic Encryption (PHE)

• Support addition OR multiplication. (ex.: RSA)

• Somewhat Homomorphic Encryption (SHE)

• PHE + a scheme-dependent number of additions or multiplications. (ex.: Lifted

ElGamal)

• Leveled Homomorphic Encryption (LHE)

• PHE + a security parameter-depended number of additions or multiplications.
• Sometimes referred to as FHE. (The theoretical upper limit is not known.)

• Fully Homomorphic Encryption (FHE)

• Supports any operations. (ex.: TFHE)

https://nindanaoto.github.io/pdf/IMIKoen.pdf Kotaro Matsuoka 2/32

https://nindanaoto.github.io/pdf/IMIKoen.pdf


Lineage of HEs

Figure 2:

https://drive.google.com/file/d/1aJCfhIpAk8unQ8BKof3C3cHlVzse1qpD/view,

Added red textshttps://nindanaoto.github.io/pdf/IMIKoen.pdf Kotaro Matsuoka 3/32

https://drive.google.com/file/d/1aJCfhIpAk8unQ8BKof3C3cHlVzse1qpD/view
https://nindanaoto.github.io/pdf/IMIKoen.pdf


What is TFHE?

• TFHE = Fully Homomorphic Encryption over the Torus
• Pros:

• Suitable for logic circuit evaluations. (Enable to use of existing synthesis tools.)
• Fast Bootstrapping operations. (< 10ms on the latest consumer grade CPUs)

• Cons:

• Relatively slow for linear operations. (Vector additions and multiplications.)

https://nindanaoto.github.io/pdf/IMIKoen.pdf Kotaro Matsuoka 4/32

https://nindanaoto.github.io/pdf/IMIKoen.pdf


Virtual Secure Platform (USENIX Security 2021)

• One of the possible application of TFHE is evaluating a general processor.
• Since the general processor represents a program as data, we can encrypt the

program.
• Theoretically highest tamper resistant capability.

Figure 3: We can encrypt both the program and data in the cloud computing setting.
https://nindanaoto.github.io/pdf/IMIKoen.pdf Kotaro Matsuoka 5/32

https://nindanaoto.github.io/pdf/IMIKoen.pdf


Inside TFHE



The overview of HomNAND

Figure 4: Block diagram of HomNAND

https://nindanaoto.github.io/pdf/IMIKoen.pdf Kotaro Matsuoka 6/32

https://nindanaoto.github.io/pdf/IMIKoen.pdf


Torus(T, Circle group, 円周群)

• Def.: The group of angles. T = R mod 1 ∈ [−0.5, 0.5)
• The addition is defined but the multiplication is not.

• ex.: 0.8 + 0.6 = 1.4 ≡ 0.4 mod 1, 0.3− 0.9 = −0.6 ≡ 0.4 mod 1
• ex.: 1.2 ≡ 0.2 mod 1, 2.4 ≡ 0.4 mod 1 but, 1.2 · 2.4 = 2.88 ̸≡ 0.2 · 0.4 = 0.08 mod 1

https://nindanaoto.github.io/pdf/IMIKoen.pdf Kotaro Matsuoka 7/32

https://nindanaoto.github.io/pdf/IMIKoen.pdf


TLWE

• TLWE = Torus Learning With Error

• Most Post Quantum Cryptography uses Integer LWE.
• Discretizing Torus by fixed point integer gives the same implementation and security.

• Notations:

• The set of Boolean: B = {0, 1} ∈ Z
• Security parameters: n ∈ Z+, α ∈ R+

• Modular Gaussian distribution: DT,α = N(0, α2) mod 1, Gaussian dist. over Torus.
• a ∈ Tn, e(error, noise), b ∈ T, s← U(Bn)(Secret Key),m(plaintext) ∈ T
• ←: x← D means x itself or its entries or coefficients are drawn from D.

• TLWE ciphertext: (a, b) ∈ Tn+1

• a← U(Tn), e← DT,α, s← U(Bn), b = a · s+m+ e

https://nindanaoto.github.io/pdf/IMIKoen.pdf Kotaro Matsuoka 8/32

https://nindanaoto.github.io/pdf/IMIKoen.pdf


The idea of 2-input NAND gate evaluation

• Since NAND takes Boolean inputs, the plaintext of TLWE should be Boolean.

• Encode Boolean into Torus by − 1
8 (representing 0) and 1

8 (1).’
• Decryption under this encoded message space uses a sign function.

• c0, c1: TLWE input ciphertexts. cy = (0, 18)− c0 − c1 : The output.

• The Torus plaintext of cy is in {− 1
8 ,

1
8 ,

3
8}.

• Iff both ciphertexts encrypting 1
8 , cy = − 1

8 < 0.

• The decryption result of cy becomes 0, iff both inputs are 1.

https://nindanaoto.github.io/pdf/IMIKoen.pdf Kotaro Matsuoka 9/32

https://nindanaoto.github.io/pdf/IMIKoen.pdf


Bootstrapping

• Evaluating decryption function over ciphertexts.

• Proposed by Gentry’s Ph.D thesis in 2009.
• By Bootstrapping, we can remove errors in ciphertexts.

• We can evaluate more homomorphic operations after Bootstrapping.

• All widely known FHE uses this idea.

https://nindanaoto.github.io/pdf/IMIKoen.pdf Kotaro Matsuoka 10/32

https://nindanaoto.github.io/pdf/IMIKoen.pdf


The idea of constructing Bootstrapping in TFHE

• TN [X]: The ring of Torus coefficient polynomials modXN + 1.

• Test Vector (of the sign function): TV [X] =
∑N−1

i=0
1
8X

i ∈ TN [X]

• Figure 5 shows the negacyclic behavior on TN [X].
• The constant term of X⌈2N ·(b−a·s)⌋ · TV [X] is the plaintext of (a, b).

• Homomorphic evaluation of X⌈2N ·(b−a·s)⌋ is the key idea.

1
8

1
8

1
8

1
8

1
8 − 1

8 − 1
8 − 1

8

− 1
8 − 1

8 − 1
8 − 1

8 − 1
8 − 1

8 − 1
8 − 1

8

− 1
8 − 1

8 − 1
8 − 1

8 − 1
8

1
8

1
8

1
8

X−3 · TV [X]

X−N · TV [X]

X−(3+N) · TV [X]

Figure 5: Negacyclic Rotation (N = 8)

https://nindanaoto.github.io/pdf/IMIKoen.pdf Kotaro Matsuoka 11/32

https://nindanaoto.github.io/pdf/IMIKoen.pdf


The idea of homomorphic exponent evaluation (Blind Rotate)

• ⌈2N · (b− a · s)⌋ ≈ ⌊2N · b⌋ −
∑n−1

i=0 ⌈2N · ai⌋ · si = ρ
• Now we can evaluate rounding without s.

• Because s ∈ Bn, we can evaluate X
∑n−1

i=0 ⌈2N ·ai⌋·si by multiplexers.
• Multiplying X⌈2N ·ai⌋·si =Select multiplying X⌈2N ·ai⌋ or not.
• The multiplexer can be constructed by multiplication with si.

Algorithm 1 The idea of BlindRotate

Require: (a, b): TLWE, s: the secret key of TLWE, TV [X] ∈ TN [X]

Ensure: crot: X−ρ · TV [X]

1: crot← X−⌊2N ·cin.b⌋ · TV [X]

2: for i = 0 to n− 1 do

3: //crot← si?X
⌈2N ·cin.ai⌋ · crot : crot

4: crot← ((X⌈2N ·cin.ai⌋ · crot)− crot) · si + crot

https://nindanaoto.github.io/pdf/IMIKoen.pdf Kotaro Matsuoka 12/32

https://nindanaoto.github.io/pdf/IMIKoen.pdf


Necessary components for Bootstrapping

1 The ciphertext for a Torus coefficient polynomial.

• crot in algorithm 1 must be encrypted.

2 Homomorphic multiplication between a Boolean and a polynomial.

• si have to be encrypted.

3 Homomorphic extraction of the constant term.

• What we need as a result of Bootstrapping is TLWE.

https://nindanaoto.github.io/pdf/IMIKoen.pdf Kotaro Matsuoka 13/32

https://nindanaoto.github.io/pdf/IMIKoen.pdf


TRLWE

• TRLWE: Torus Ring Learning With Error

• Security parameters: N ∈ Z+, αbk ∈ R+

• Secret key for TRLWE: S[X]← U(BN [X])
• Plaintext: m[X] ∈ TN [X]

• TRLWE ciphertext:

(a[X], b[X]) ∈ (TN [X])2, a[X]← U(TN [X]), b[X] = a[X] · S[X] + e[X] +m[X]

https://nindanaoto.github.io/pdf/IMIKoen.pdf Kotaro Matsuoka 14/32

https://nindanaoto.github.io/pdf/IMIKoen.pdf


TRGSW

• TRGSW: Torus Ring Gentry-Sahai-Waters

• Supports multiplication with TRLWE as a Leveled HE.

• TFHE uses this ciphertext to encrypt s.
• In general, it can encrypt an integer polynomial.

https://nindanaoto.github.io/pdf/IMIKoen.pdf Kotaro Matsuoka 15/32

https://nindanaoto.github.io/pdf/IMIKoen.pdf


Scaling

• All ciphertexts in TFHE use Torus-based message spaces.

• We want to encode si into Torus.

• Parameter (not security related): Bg ∈ Z+

• Scaling TRLWE by Bg and rounding into integer polynomials.

(⌈Bg · a[X]⌋, ⌈Bg · b[X]⌋)·

(
si
Bg 0

0 si
Bg

)
= (ar[X], br[X])

≈ si · (a[X], b[X])

br[X]− ar[X] · S[X] = si(b[X]− a[X] · S[X] + er[X])

https://nindanaoto.github.io/pdf/IMIKoen.pdf Kotaro Matsuoka 16/32

https://nindanaoto.github.io/pdf/IMIKoen.pdf


Masking by zero ciphertexts

• Adding a vector of TRLWE ciphertexts to encrypt.

• (a1[X], b1[X]), (a2[X], b2[X]) are encryption of 0.

• The result of the inner product with ciphertexts of 0 is a ciphertext of 0.

• Adding the vector introduces more errors but not changes the result plaintext.

(⌈Bg · a[X]⌋, ⌈Bg · b[X]⌋) ·

(
si
Bg 0

0 si
Bg

)
+

(
a1[X] b1[X]

a2[X] b2[X]

)
] ≈

si · (a[X], b[X]) + ⌈Bg · a[X]⌋ · (a1[X], b1[X]) + ⌈Bg · b[X]⌋ · (a2[X], b2[X])

https://nindanaoto.github.io/pdf/IMIKoen.pdf Kotaro Matsuoka 17/32

https://nindanaoto.github.io/pdf/IMIKoen.pdf


Trade-off in the selection of Bg

• The max coefficient value of ⌈Bg · a[X]⌋, ⌈Bg · b[X]⌋ is Bg.

• The bigger Bg means more errors in the resulting ciphertext.

• However, decreasing Bg means bigger rounding errors.

• Decomposition is the idea to avoid this trade-off.

https://nindanaoto.github.io/pdf/IMIKoen.pdf Kotaro Matsuoka 18/32

https://nindanaoto.github.io/pdf/IMIKoen.pdf


Decomposition

• Parameter (not security related): l ∈ Z+

• Decomposition takes a TRLWE ciphertext as the input.

• Returns (āi[X], b̄i[X]) ∈ ((Z/Bg)[X])2l, i ∈ (1, l)
• The coefficients of (āi[X], b̄i[X]) are ith digits of (a[X], b[X]) in the base Bg.

(a[X], b[X]) ≈ (ā1[X], ..., āl[X], b̄1[X], ..., b̄l[X])



1
Bg 0
1

Bg2
0

...
...

1
Bgl

0

0 1
Bg

0 1
Bg2

...
...

0 1
Bgl


https://nindanaoto.github.io/pdf/IMIKoen.pdf Kotaro Matsuoka 19/32

https://nindanaoto.github.io/pdf/IMIKoen.pdf


The actual form of TRGSW

• We assume applying Decomposition to the TRLWE ciphertext to be multiplied.

si
Bg 0
si

Bg2
0

...
...

si
Bgl

0

0 si
Bg

0 si
Bg2

...
...

0 si
Bgl


+



a1[X] b1[X]

a2[X] b2[X]
...

...

al[X] bl[X]

al+1[X] bl+1[X]

al+2[X] bl+2[X]
...

...

a2l[X] b2l[X]


https://nindanaoto.github.io/pdf/IMIKoen.pdf Kotaro Matsuoka 20/32

https://nindanaoto.github.io/pdf/IMIKoen.pdf


Trade-off in the selection of l

• Increasing l exponentially reduces rounding errors but linearly amplifies 0

ciphertexts errors.

• Increasing l means more polynomial multiplications.

• The heaviest computation part in TFHE.

https://nindanaoto.github.io/pdf/IMIKoen.pdf Kotaro Matsuoka 21/32

https://nindanaoto.github.io/pdf/IMIKoen.pdf


Breaking down homomorphic constant term extraction

• The homomorphic constant term extraction can be divided into 2 parts.

• Notation:

• TLWElvl0: The n+ 1 degree TLWE ciphertext. (Already introduced one.)
• TLWElvl1: The N + 1 degree TLWE ciphertext. (The secret key is different.)

1 Sample Extract Index: Convert TRLWE into TLWElvl1.

2 Identity Key Switching: Convert TLWElvl1 into TLWElvl0.

https://nindanaoto.github.io/pdf/IMIKoen.pdf Kotaro Matsuoka 22/32

https://nindanaoto.github.io/pdf/IMIKoen.pdf


Sample Extract Index

• Careful look for the decryption of TRLWE gives the idea.

• The minus sign of the third term comes from the negacyclic property of TN [X].

b[X]−a[X]·S[X] =

N−1∑
k=0

[bk−(
∑

i+j=k,0≤i,j≤N−1

ai ·Sj)−(
∑

i+j=N+k,0≤i,j≤N−1

−ai ·Sj)]X
k

• The idea is to fix k in the above formula.
• Regard S (the vector of coefficients) as the key.
• By setting k = 0, we can get the constant term.

• (a′, b′): A TLWElvl1 ciphertext encrypting the kth coefficient.

b′ = bk

a′i =

ak−i if i ≤ k

−aN+k−i otherwise
https://nindanaoto.github.io/pdf/IMIKoen.pdf Kotaro Matsuoka 23/32

https://nindanaoto.github.io/pdf/IMIKoen.pdf


IdentityKeySwitching

• ”Key Switching” means changing the secret key without decryption.

• In general, ”Key Switching” can evaluate linear function at the same time.
• ”Identity” means we evaluate the identity function in this case.

• The idea is to compute b− a · S directly.

• We can reuse the idea of Scaling and Decomposition.

• Notations:

• Parameters: base, t ∈ Z+(similar to Bg, l respectively.)
• IKSKij : The TLWElvl1 ciphertext encrypting Si

basej

• āij : jth digit of ai in base base.

(0, b)−
N−1∑
i=0

t∑
j=1

āij · IKSKij

https://nindanaoto.github.io/pdf/IMIKoen.pdf Kotaro Matsuoka 24/32

https://nindanaoto.github.io/pdf/IMIKoen.pdf


The overview of HomNAND (again)

Figure 6: Block diagram of HomNAND

https://nindanaoto.github.io/pdf/IMIKoen.pdf Kotaro Matsuoka 25/32

https://nindanaoto.github.io/pdf/IMIKoen.pdf


Parameter Selection

• The security parameter of TFHE affects the performance.

• Unlike conventional ciphers, there is relatively high motivation to cut off the security

margin.

• Current de facto tool for security estimation is ”lwe-estimator”.

• https://github.com/malb/lattice-estimator/

• Supporting dual/hybrid attack (https://ia.cr/2020/515).
• Missing RLWE specific attacks. (AFAIK)

• Estimating error rate of decryption after computations is also necessary.

• To reduce n,N , we have to increase α, αbk.
• concrete-npe seems to be best one for TFHE.

https://github.com/zama-ai/concrete-core/tree/main/concrete-npe

https://nindanaoto.github.io/pdf/IMIKoen.pdf Kotaro Matsuoka 26/32

https://github.com/malb/lattice-estimator/
https://ia.cr/2020/515
https://github.com/zama-ai/concrete-core/tree/main/concrete-npe
https://nindanaoto.github.io/pdf/IMIKoen.pdf


Further Optimizations

• Using MLWE (Increasing the dimension of TRLWE.) or NTRU.

• Reducing the degree of polynomials. (Ease polynomial multiplications.)

• Programmable Bootstrapping.

• Supports more sophisticated non-linear functions than NAND. (ex.: Full Adder,

ReLU)
• My paper about compound gates. (WAHC2021)

https://doi.org/10.1145/3474366.3486927

• TLWE (or TRGSW) to TRGSW bootstrapping (called Circuit Bootstrapping)

• We can use TRGSW’s multiplication as a base operation.

• Scheme switching. (Switching between TFHE and other HEs without decryption.)

• We can use a suitable scheme for different operations.

https://nindanaoto.github.io/pdf/IMIKoen.pdf Kotaro Matsuoka 27/32

https://doi.org/10.1145/3474366.3486927
https://nindanaoto.github.io/pdf/IMIKoen.pdf


The list of open-source TFHE implementations

• TFHE: The original implementation. Deprecated.

• https://github.com/tfhe/tfhe

• Concrete: The authors’ Rust implementation. Supporting integer operations.

• https://github.com/zama-ai/concrete.git

• OpenFHE: Supporting multiple HEs. Aims to support scheme switching.

• https://github.com/openfheorg/openfhe-development

• FINAL: NTRU based TFHE.https://github.com/KULeuven-COSIC/FINAL

• MOSFHET: Supports key compression and automorphism Blind Rotate.

• https://github.com/antoniocgj/MOSFHET

• TFHEpp: My implementation. Supporting Circuit Bootstrapping.

• https://github.com/virtualsecureplatform/TFHEpp.git

• cuFHE: CUDA implementation.

• Forked ver.: https://github.com/virtualsecureplatform/cuFHE.git
https://nindanaoto.github.io/pdf/IMIKoen.pdf Kotaro Matsuoka 28/32

https://github.com/tfhe/tfhe
https://github.com/zama-ai/concrete.git
https://github.com/openfheorg/openfhe-development
https://github.com/KULeuven-COSIC/FINAL
https://github.com/antoniocgj/MOSFHET
https://github.com/virtualsecureplatform/TFHEpp.git
https://github.com/virtualsecureplatform/cuFHE.git
https://nindanaoto.github.io/pdf/IMIKoen.pdf


Boolean Circuit Evaluations



Boolean circuit evaluations

• Combinational circuit is the Directed Acyclic Graph(DAG) of logic gates.

• We can use DAG-based job scheduling for evaluations.
• ex.: Taskflow(https://github.com/taskflow/taskflow),

StarPU(https://starpu.gitlabpages.inria.fr/)

• Sequential circuits can be divided by registers into combinational circuits.

• Just copy the inputs of registers to the outputs at the end of the cycle.

• The netlist (DAG) of the circuit can be obtained by conventional synthesis tools.

• ex.: Yosys(https://github.com/YosysHQ/yosys.git)

https://nindanaoto.github.io/pdf/IMIKoen.pdf Kotaro Matsuoka 29/32

https://github.com/taskflow/taskflow
https://starpu.gitlabpages.inria.fr/
https://github.com/YosysHQ/yosys.git
https://nindanaoto.github.io/pdf/IMIKoen.pdf


Speed on real environments

• As an example, here is the evaluation time for VSP.

• Equipped with 512 bytes ROM and 512 bytes RAM.

• Pipelining degrades performance if the number of worker is not enough.

• At the best case, we achieve around 1.25 Hz evaluation.

Table 1: Performance Evaluation Using Hamming

Machine Pipelining? # of cycles Runtime [s] sec./cycle

AWS c5.metal
No 936 2342.0 2.502

Yes 1216 2773.0 2.280

AWS p3.16xlarge
No 936 1440.0 1.538

Yes 1216 965.9 0.794

https://nindanaoto.github.io/pdf/IMIKoen.pdf Kotaro Matsuoka 30/32

https://nindanaoto.github.io/pdf/IMIKoen.pdf


The list of open-source Boolean circuit evaluation frameworks

• HDL-based ones:
• Iyokan: https://github.com/virtualsecureplatform/Iyokan

• Supports both CPU and GPU. CMUX Memory is integrated.

• Sudachi: https://github.com/virtualsecureplatform/Sudachi

• Taskflow based. Compound gates are supported.

• HLS-based ones:
• Cingulta: https://github.com/CEA-LIST/Cingulata

• Deprecated.

• FHE Transpiler: https://github.com/google/fully-homomorphic-encryption

• Actively developed. Using XLS as a HLS language.

https://nindanaoto.github.io/pdf/IMIKoen.pdf Kotaro Matsuoka 31/32

https://github.com/virtualsecureplatform/Iyokan
https://github.com/virtualsecureplatform/Sudachi
https://github.com/CEA-LIST/Cingulata
https://github.com/google/fully-homomorphic-encryption
https://nindanaoto.github.io/pdf/IMIKoen.pdf


Conclusion (Open questions)

• FHE is the holy grail but not the silver bullet.

• The security only depends on the secret key.
• Efficiency is generally lower than other privacy-preserving computing methods.

• Who is the winner of FHE?

• Currently, CKKS is the mainstream because it is suitable for the private AI.

• How we can extend HE for multi-party settings?

• There are few works about multi-key or threashold HEs.

• How we can resolve malleability?

• Restricting possible computations is difficult.
• Merging with verifiable computation? (Zero-knowledge proof)

• How about the hardware acceleration?

• DARPA DPRIVE project

https://nindanaoto.github.io/pdf/IMIKoen.pdf Kotaro Matsuoka 32/32

https://nindanaoto.github.io/pdf/IMIKoen.pdf

	Introduction
	Inside TFHE
	Boolean Circuit Evaluations

