Evaluating Boolean circuits over ciphertexts using Fully
Homomorphic Encryption over the Torus

Kotaro Matsuoka
Novembe/8/2022

Self Introduction

e Affiliation: 2nd grade Master's student at
Kyoto University

o Certified as a "super creator” at IPA's MITOU
program 2019.

® Gave lectures about TFHE at IPA’s Security
Camp 2020-2022.

® Today's talk based on this lecture.
e \Won the NHK Robot Contest 2019.

Figure 1: One of the robots we made
in NHK Robot Contest.

https://nindanaoto.github.io/pdf/IMIKoen.pdf Kotaro Matsuoka 1/32

https://nindanaoto.github.io/pdf/IMIKoen.pdf

Introduction

Classification of HEs

Homomorphic Encryption (HE) = A form of encryption that permits encrypted

data to be evaluated by arbitrary functions without decryption.

Partially Homomorphic Encryption (PHE)
® Support addition OR multiplication. (ex.: RSA)

Somewhat Homomorphic Encryption (SHE)

® PHE + a scheme-dependent number of additions or multiplications. (ex.: Lifted
ElGamal)

Leveled Homomorphic Encryption (LHE)

® PHE + a security parameter-depended number of additions or multiplications.
® Sometimes referred to as FHE. (The theoretical upper limit is not known.)

Fully Homomorphic Encryption (FHE)
® Supports any operations. (ex.: TFHE)

https://nindanaoto.github.io/pdf/IMIKoen.pdf Kotaro Matsuoka 2/32

https://nindanaoto.github.io/pdf/IMIKoen.pdf

Lineage of HEs

2014

~30 years

2009 NTRU F
branch
e 2012 /
S en q
2013

3rd Gen

fast bootstrapping

2020
N 20
] 2012 4th Gen
2010
1978 2nd Gen é leveled schemes
branch
il 2016
“over the integers” branch
Figure 2:

https://drive.google.com/file/d/1aJCfhIpAk8unQ8BKof3C3cH1VzselqpD/view,

ﬁ@d édnjféé}af)ég(.gthub .io/pdf/IMIKoen.pdf

Kotaro Matsuoka

3/32

https://drive.google.com/file/d/1aJCfhIpAk8unQ8BKof3C3cHlVzse1qpD/view
https://nindanaoto.github.io/pdf/IMIKoen.pdf

What is TFHE?

e TFHE = Fully Homomorphic Encryption over the Torus
® Pros:

® Suitable for logic circuit evaluations. (Enable to use of existing synthesis tools.)
® Fast Bootstrapping operations. (< 10ms on the latest consumer grade CPUs)

® Cons:

® Relatively slow for linear operations. (Vector additions and multiplications.)

https://nindanaoto.github.io/pdf/IMIKoen.pdf Kotaro Matsuoka 4/32

https://nindanaoto.github.io/pdf/IMIKoen.pdf

Virtual Secure Platform (USENIX Security 2021)

® One of the possible application of TFHE is evaluating a general processor.
® Since the general processor represents a program as data, we can encrypt the
program.

® Theoretically highest tamper resistant capability.

Client Cloud Server

Program D
Execution

| ®
a
- = [J
2 |
() Wiretapper

https://nindanaoto.github.io/pdf/IMIKoen.pdf Kotaro Matsuoka 5/32

https://nindanaoto.github.io/pdf/IMIKoen.pdf

Inside TFHE

The overview of HomNAND

TLWE
0,1/8
A V0 |_ . +)
i Key Switch Key | TLWE
g | TLWE @ W10
o : Sampl Id 5
ample entity
. TLWE TLWE
Test Vector > |Blind Rotate TRLWE Fi}r(ltcll'g;t > W1 > Sz;);h | 10 Y

Bootstrapping Key | TRGSW

Figure 4: Block diagram of HomNAND

https://nindanaoto.github.io/pdf/IMIKoen.pdf Kotaro Matsuoka 6/32

https://nindanaoto.github.io/pdf/IMIKoen.pdf

Torus(T, Circle group, FEE¥)

® Def.: The group of angles. T =R mod 1 € [-0.5,0.5)
® The addition is defined but the multiplication is not.

® ex.: 0.84+06=14=04mod 1,0.3—-0.9=-0.6=0.4mod 1
® ex.: 1.2=02mod 1,24 =0.4mod 1 but, 1.2-2.4 =288 0.2-0.4 = 0.08 mod 1

https://nindanaoto.github.io/pdf/IMIKoen.pdf Kotaro Matsuoka 7/32

https://nindanaoto.github.io/pdf/IMIKoen.pdf

TLWE

® TLWE = Torus Learning With Error
® Most Post Quantum Cryptography uses Integer LWE.
® Discretizing Torus by fixed point integer gives the same implementation and security.
® Notations:
® The set of Boolean: B = {0,1} € Z
® Security parameters: n € ZT, o € Rt
® Modular Gaussian distribution: Dt = N(0,a?) mod 1, Gaussian dist. over Torus.
® ac T" e(error, noise),b € T,s < U(B"™)(Secret Key), m(plaintext) € T
® (— x < D means z itself or its entries or coefficients are drawn from D.
® TLWE ciphertext: (a,b) € T"*!
¢ a+U(T"),e < Dry,s< UB"),b=a-s+m+e

https://nindanaoto.github.io/pdf/IMIKoen.pdf Kotaro Matsuoka 8/32

https://nindanaoto.github.io/pdf/IMIKoen.pdf

The idea of 2-input NAND gate evaluation

® Since NAND takes Boolean inputs, the plaintext of TLWE should be Boolean.
® Encode Boolean into Torus by — % (representing 0) and %(1).’
® Decryption under this encoded message space uses a sign function.
® cy,ci: TLWE input ciphertexts. ¢, = (O %) — ¢p — c¢1 : The output.
® The Torus plaintext of ¢, is in { 8, 53}
® |ff both ciphertexts encrypting 8, s % < 0.

® The decryption result of ¢, becomes 0, iff both inputs are 1.

https://nindanaoto.github.io/pdf/IMIKoen.pdf Kotaro Matsuoka 9/32

https://nindanaoto.github.io/pdf/IMIKoen.pdf

Bootstrapping

® Evaluating decryption function over ciphertexts.

® Proposed by Gentry's Ph.D thesis in 2009.
® By BOOTSTRAPPING, we can remove errors in ciphertexts.

® We can evaluate more homomorphic operations after BOOTSTRAPPING.

® All widely known FHE uses this idea.

https://nindanaoto.github.io/pdf/IMIKoen.pdf Kotaro Matsuoka 10/32

https://nindanaoto.github.io/pdf/IMIKoen.pdf

The idea of constructing Bootstrapping in TFHE

e Tx[X]: The ring of Torus coefficient polynomials mod X~ + 1.

® Test Vector (of the sign function): TV[X] = vaol 1Xt e Tn[X]

® Figure 5 shows the negacyclic behavior on T |[X].
e The constant term of X [2N(t=2)] . TV [X] is the plaintext of (a, b).
® Homomorphic evaluation of X2N'(t=2'%)] is the key idea.

X3 TV[X]
__ FEFEREREEIENEY
XN.1V[X]
IR
X-CG+N) . TV[X]
B[]

Figure 5: Negacyclic Rotation (N = 8)

https://nindanaoto.github.io/pdf/IMIKoen.pdf Kotaro Matsuoka 11/32

https://nindanaoto.github.io/pdf/IMIKoen.pdf

The idea of homomorphic exponent evaluation (Blind Rotate)

®* [2N-(b—a-s)| = [2N-b] — X" [2N -a;| -si=p
® Now we can evaluate rounding without s.

® Because s € B", we can evaluate X0 [2N-ai-si by multiplexers.
® Multiplying X 2NV ail'si —Select multiplying X [?N"%i] or not.
® The multiplexer can be constructed by multiplication with s;.

Algorithm 1 The idea of BLINDROTATE

Require: (a,b): TLWE, s: the secret key of TLWE, TV [X] € Ty[X]
Ensure: crot: X7 - TV[X]

1: crot « X~ 2N-cinbl . TV [X]

2: fori=0ton—1do

3 //crot « s;2X2N-cinail . crot : crot

4 crot < ((X2N-cinail . crot) — crot) - s; + crot

https://nindanaoto.github.io/pdf/IMIKoen.pdf Kotaro Matsuoka 12/32

https://nindanaoto.github.io/pdf/IMIKoen.pdf

Necessary components for Bootstrapping

@ The ciphertext for a Torus coefficient polynomial.
® crot in algorithm 1 must be encrypted.

® Homomorphic multiplication between a Boolean and a polynomial.
® s; have to be encrypted.

©® Homomorphic extraction of the constant term.

® What we need as a result of Bootstrapping is TLWE.

https://nindanaoto.github.io/pdf/IMIKoen.pdf Kotaro Matsuoka 13/32

https://nindanaoto.github.io/pdf/IMIKoen.pdf

TRLWE

o TRLWE: Torus Ring Learning With Error
® Security parameters: N € ZT, ap, € RT
® Secret key for TRLWE: S[X] + U(By[X])
® Plaintext: m[X] € Tn[X]
o TRLWE ciphertext:
(a[X],0[X]) € (Tn[X])?, a[X] « U(Tn[X]), b[X] = a[X] - S[X] + e[X] + m[X]

https://nindanaoto.github.io/pdf/IMIKoen.pdf Kotaro Matsuoka 14/32

https://nindanaoto.github.io/pdf/IMIKoen.pdf

TRGSW

® TRGSW: Torus Ring Gentry-Sahai-Waters
® Supports multiplication with TRLWE as a Leveled HE.

® TFHE uses this ciphertext to encrypt s.
® |n general, it can encrypt an integer polynomial.

https://nindanaoto.github.io/pdf/IMIKoen.pdf Kotaro Matsuoka 15/32

https://nindanaoto.github.io/pdf/IMIKoen.pdf

o All ciphertexts in TFHE use Torus-based message spaces.

® \We want to encode s; into Torus.
® Parameter (not security related): Bg € Z*

® Scaling TRLWE by Bg and rounding into integer polynomials.

(1Bg-alX1), (- 0x)) | %0)) = @[x], 1)
Bg

~ s; - (a[X], b[X])
b"[X] — a"[X] - S[X] = 5i(b[X] — a[X] - S[X] + e-[X])

https://nindanaoto.github.io/pdf/IMIKoen.pdf Kotaro Matsuoka 16/32

https://nindanaoto.github.io/pdf/IMIKoen.pdf

Masking by zero ciphertexts

e Adding a vector of TRLWE ciphertexts to encrypt.
® (a1[X],b1[X]), (a2[X], b2[X]) are encryption of 0.
® The result of the inner product with ciphertexts of 0 is a ciphertext of 0.

® Adding the vector introduces more errors but not changes the result plaintext.

S a1[X] b[X] -
(1B alx1) B9 o) (7 o)+ { i g >] 8

si - (a[X],b[X]) + [Bg - a[X]] - (a1 [X], 0:[X]) + [Bg - b[X]] - (a2[X], b2[X])

https://nindanaoto.github.io/pdf/IMIKoen.pdf Kotaro Matsuoka 17/32

https://nindanaoto.github.io/pdf/IMIKoen.pdf

Trade-off in the selection of Bg

® The max coefficient value of [Bg - a[X]], [Bg - b[X]] is Bg.

® The bigger Bg means more errors in the resulting ciphertext.
® However, decreasing Bg means bigger rounding errors.

® DECOMPOSITION is the idea to avoid this trade-off.

https://nindanaoto.github.io/pdf/IMIKoen.pdf Kotaro Matsuoka 18/32

https://nindanaoto.github.io/pdf/IMIKoen.pdf

® Parameter (not security related): [€ Z*
® Decomposition takes a TRLWE ciphertext as the input.

® Returns (a;[X],b:[X]) € ((Z/Bg)[X])%,i € (1,1)

® The coefficients of (a;[X], b;[X]) are ith digits of (a[X], b[X]) in the base Bg.

B% 0

BLQQ 0

A T

(a[X],b[X]) = (a1[X], ..., ;[X], b1 [X], ..., by [X]) Bog 1
Bg

0o L
!
Kotaro Matggka 19/32

https://nindanaoto.github.io/pdf/IMIKoen.pdf

https://nindanaoto.github.io/pdf/IMIKoen.pdf

The actual form of TRGSW

® We assume applying DECOMPOSITION to the TRLWE ciphertext to be multiplied.

Si

Bg U a[X] b[X
Bz O as[X] bo|X]
g0 || alx wix]
U apy1[X] bya[X]
Be? ar2[X] bryo[X]
0 BS—;Z an[X] bylX]

https://nindanaoto.github.io/pdf/IMIKoen.pdf Kotaro Matsuoka 20/32

https://nindanaoto.github.io/pdf/IMIKoen.pdf

Trade-off in the selection of [

® Increasing [exponentially reduces rounding errors but linearly amplifies 0
ciphertexts errors.
® |ncreasing [means more polynomial multiplications.

® The heaviest computation part in TFHE.

https://nindanaoto.github.io/pdf/IMIKoen.pdf Kotaro Matsuoka 21/32

https://nindanaoto.github.io/pdf/IMIKoen.pdf

Breaking down homomorphic constant term extraction

® The homomorphic constant term extraction can be divided into 2 parts.
® Notation:

® TLWEIVIO: The n + 1 degree TLWE ciphertext. (Already introduced one.)
® TLWEIVvIl: The N + 1 degree TLWE ciphertext. (The secret key is different.)

@ Sample Extract Index: Convert TRLWE into TLWEIvI1.
® ldentity Key Switching: Convert TLWEIvI1 into TLWEIvIO.

https://nindanaoto.github.io/pdf/IMIKoen.pdf Kotaro Matsuoka 22/32

https://nindanaoto.github.io/pdf/IMIKoen.pdf

Sample Extract Index

® Careful look for the decryption of TRLWE gives the idea.
® The minus sign of the third term comes from the negacyclic property of T n[X].

N-1
bX]—alX]-S[X] =) [bx—(> a;i-S55) = (> ~a;-55)]1X*

k=0 it+j=k,0<i,j <N—1 i+j=N—+k,0<i,j <N—1

® The idea is to fix k£ in the above formula.
® Regard S (the vector of coefficients) as the key.
® By setting k = 0, we can get the constant term.
e (a’,V'): A TLWEIVI1 ciphertext encrypting the kth coefficient.

b = by
Al—; if 4 S k

—apn+k—; otherwise

Kotaro Matsuoka 23/32

https://nindanaoto.github.io/pdf/IMIKoen.pdf

https://nindanaoto.github.io/pdf/IMIKoen.pdf

IdentityKeySwitching

e "Key Switching” means changing the secret key without decryption.

® |n general, "Key Switching” can evaluate linear function at the same time.
® "|dentity” means we evaluate the identity function in this case.

® The idea is to compute b — a - S directly.
® We can reuse the idea of Scaling and DECOMPOSITION.
® Notations:

® Parameters: base,t € ZT (similar to By, respectively.)
® JKSK;;: The TLWEIVI1 ciphertext encrypting
® a;;: jth digit of a; in base base.

N-1 t
- > a; - IKSKy

=0 j=1

i
basel

https://nindanaoto.github.io/pdf/IMIKoen.pdf Kotaro Matsuoka 24/32

https://nindanaoto.github.io/pdf/IMIKoen.pdf

The overview of HomNAND (again)

TLWE
0,1/8
A V0 |_ . +)
i Key Switch Key | TLWE
g | TLWE @ W10
o : Sampl Id 5
ample entity
. TLWE TLWE
Test Vector > |Blind Rotate TRLWE Fi}r(ltcll'g;t > W1 > Sz;);h | 10 Y

Bootstrapping Key | TRGSW

Figure 6: Block diagram of HomNAND

https://nindanaoto.github.io/pdf/IMIKoen.pdf Kotaro Matsuoka 25/32

https://nindanaoto.github.io/pdf/IMIKoen.pdf

Parameter Selection

® The security parameter of TFHE affects the performance.
® Unlike conventional ciphers, there is relatively high motivation to cut off the security
margin.
® Current de facto tool for security estimation is " lwe-estimator” .

® https://github.com/malb/lattice-estimator/
® Supporting dual/hybrid attack (https://ia.cr/2020/515).
® Missing RLWE specific attacks. (AFAIK)
® Estimating error rate of decryption after computations is also necessary.
® To reduce n, N, we have to increase «, apy.
® concrete-npe seems to be best one for TFHE.

https://github.com/zama-ai/concrete-core/tree/main/concrete-npe

https://nindanaoto.github.io/pdf/IMIKoen.pdf Kotaro Matsuoka 26/32

https://github.com/malb/lattice-estimator/
https://ia.cr/2020/515
https://github.com/zama-ai/concrete-core/tree/main/concrete-npe
https://nindanaoto.github.io/pdf/IMIKoen.pdf

Further Optimizations

Using MLWE (Increasing the dimension of TRLWE.) or NTRU.

® Reducing the degree of polynomials. (Ease polynomial multiplications.)

® Programmable Bootstrapping.

® Supports more sophisticated non-linear functions than NAND. (ex.: Full Adder,
ReLU)
® My paper about compound gates. (WAHC2021)
https://doi.org/10.1145/3474366.3486927
TLWE (or TRGSW) to TRGSW bootstrapping (called Circuit Bootstrapping)

® We can use TRGSW's multiplication as a base operation.

Scheme switching. (Switching between TFHE and other HEs without decryption.)

® \We can use a suitable scheme for different operations.

https://nindanaoto.github.io/pdf/IMIKoen.pdf Kotaro Matsuoka 27/32

https://doi.org/10.1145/3474366.3486927
https://nindanaoto.github.io/pdf/IMIKoen.pdf

The list of open-source TFHE implementations

TFHE: The original implementation. Deprecated.
® https://github.com/tfhe/tfhe

Concrete: The authors’ Rust implementation. Supporting integer operations.

® https://github.com/zama-ai/concrete.git

OpenFHE: Supporting multiple HEs. Aims to support scheme switching.

® https://github.com/openfheorg/openfhe-development
FINAL: NTRU based TFHE.https://github.com/KULeuven-COSIC/FINAL
MOSFHET: Supports key compression and automorphism Blind Rotate.

® https://github.com/antoniocgj/MOSFHET

TFHEpp: My implementation. Supporting Circuit Bootstrapping.
® https://github.com/virtualsecureplatform/TFHEpp.git
e cuFHE: CUDA implementation.
® Forked ver.: httIEs //github. com/v1rtualsecureItalatform/chHE git

https://nindanaoto.github.io/pdf/IM oen.pdf Kotaro Matsuoka 28/32

https://github.com/tfhe/tfhe
https://github.com/zama-ai/concrete.git
https://github.com/openfheorg/openfhe-development
https://github.com/KULeuven-COSIC/FINAL
https://github.com/antoniocgj/MOSFHET
https://github.com/virtualsecureplatform/TFHEpp.git
https://github.com/virtualsecureplatform/cuFHE.git
https://nindanaoto.github.io/pdf/IMIKoen.pdf

Boolean Circuit Evaluations

Boolean circuit evaluations

e Combinational circuit is the Directed Acyclic Graph(DAG) of logic gates.

® We can use DAG-based job scheduling for evaluations.
® ex.: Taskflow(https://github.com/taskflow/taskflow),
StarPU(https://starpu.gitlabpages.inria.fr/)

® Sequential circuits can be divided by registers into combinational circuits.
® Just copy the inputs of registers to the outputs at the end of the cycle.
® The netlist (DAG) of the circuit can be obtained by conventional synthesis tools.

® ex.: Yosys(https://github.com/YosysHQ/yosys.git)

https://nindanaoto.github.io/pdf/IMIKoen.pdf Kotaro Matsuoka 29/32

https://github.com/taskflow/taskflow
https://starpu.gitlabpages.inria.fr/
https://github.com/YosysHQ/yosys.git
https://nindanaoto.github.io/pdf/IMIKoen.pdf

Speed on real environments

® As an example, here is the evaluation time for VSP.
® Equipped with 512 bytes ROM and 512 bytes RAM.
® Pipelining degrades performance if the number of worker is not enough.

® At the best case, we achieve around 1.25 Hz evaluation.

Table 1: Performance Evaluation Using Hamming

Machine Pipelining? ‘ # of cycles Runtime [s] sec./cycle
No 936 92342.0 2.502
AWS c5.metal
©-meta Yes 1216 2773.0 2.280
No 936 1440.0 1.538
AWS p3.16x]
SIS Yes 1216 965.9 0.794

https://nindanaoto.github.io/pdf/IMIKoen.pdf Kotaro Matsuoka 30/32

https://nindanaoto.github.io/pdf/IMIKoen.pdf

The list of open-source Boolean circuit evaluation frameworks

® HDL-based ones:
® |yokan: https://github.com/virtualsecureplatform/Iyokan
® Supports both CPU and GPU. CMUX Memory is integrated.
® Sudachi: https://github.com/virtualsecureplatform/Sudachi
® Taskflow based. Compound gates are supported.
® HLS-based ones:
¢ Cingulta: https://github.com/CEA-LIST/Cingulata
® Deprecated.
® FHE Transpiler: https://github.com/google/fully-homomorphic-encryption

® Actively developed. Using XLS as a HLS language.

https://nindanaoto.github.io/pdf/IMIKoen.pdf Kotaro Matsuoka 31/32

https://github.com/virtualsecureplatform/Iyokan
https://github.com/virtualsecureplatform/Sudachi
https://github.com/CEA-LIST/Cingulata
https://github.com/google/fully-homomorphic-encryption
https://nindanaoto.github.io/pdf/IMIKoen.pdf

Conclusion (Open questions)

® FHE is the holy grail but not the silver bullet.

® The security only depends on the secret key.
® Efficiency is generally lower than other privacy-preserving computing methods.

Who is the winner of FHE?

® Currently, CKKS is the mainstream because it is suitable for the private Al.

® How we can extend HE for multi-party settings?
® There are few works about multi-key or threashold HEs.
® How we can resolve malleability?

® Restricting possible computations is difficult.
® Merging with verifiable computation? (Zero-knowledge proof)

How about the hardware acceleration?
® DARPA DPRIVE project

https://nindanaoto.github.io/pdf/IMIKoen.pdf Kotaro Matsuoka 32/32

https://nindanaoto.github.io/pdf/IMIKoen.pdf

	Introduction
	Inside TFHE
	Boolean Circuit Evaluations

