Evaluating Boolean circuits over ciphertexts using Fully Homomorphic Encryption over the Torus

Kotaro Matsuoka Novembe/8/2022

- Affiliation: 2nd grade Master's student at Kyoto University
- Certified as a "super creator" at IPA's MITOU program 2019.
- Gave lectures about TFHE at IPA's Security Camp 2020-2022.
 - Today's talk based on this lecture.
- Won the NHK Robot Contest 2019.

Figure 1: One of the robots we made in NHK Robot Contest.

Introduction

- Homomorphic Encryption (HE) = A form of encryption that permits encrypted data to be evaluated by arbitrary functions without decryption.
- Partially Homomorphic Encryption (PHE)
 - Support addition OR multiplication. (ex.: RSA)
- Somewhat Homomorphic Encryption (SHE)
 - PHE + a scheme-dependent number of additions or multiplications. (ex.: Lifted ElGamal)
- Leveled Homomorphic Encryption (LHE)
 - PHE + a security parameter-depended number of additions or multiplications.
 - Sometimes referred to as FHE. (The theoretical upper limit is not known.)
- Fully Homomorphic Encryption (FHE)
 - Supports any operations. (ex.: TFHE)

https://nindanaoto.github.io/pdf/IMIKoen.pdf

Figure 2:

https://drive.google.com/file/d/1aJCfhIpAk8unQ8BKof3C3cHlVzse1qpD/view,

Add dninden act thub.io/pdf/IMIKoen.pdf

- TFHE = Fully Homomorphic Encryption over the Torus
 - Pros:
 - Suitable for logic circuit evaluations. (Enable to use of existing synthesis tools.)
 - Fast Bootstrapping operations. (< 10ms on the latest consumer grade CPUs)
 - Cons:
 - Relatively slow for linear operations. (Vector additions and multiplications.)

Virtual Secure Platform (USENIX Security 2021)

- One of the possible application of TFHE is evaluating a general processor.
 - Since the general processor represents a program as data, we can encrypt the program.
 - Theoretically highest tamper resistant capability.

Inside TFHE

Figure 4: Block diagram of HomNAND

- Def.: The group of angles. $\mathbb{T}=\mathbb{R} \bmod 1 \in [-0.5, 0.5)$
- The addition is defined but the multiplication is not.
 - ex.: $0.8 + 0.6 = 1.4 \equiv 0.4 \mod 1, 0.3 0.9 = -0.6 \equiv 0.4 \mod 1$
 - ex.: $1.2 \equiv 0.2 \mod 1, 2.4 \equiv 0.4 \mod 1$ but, $1.2 \cdot 2.4 = 2.88 \neq 0.2 \cdot 0.4 = 0.08 \mod 1$

- TLWE = Torus Learning With Error
 - Most Post Quantum Cryptography uses Integer LWE.
 - Discretizing Torus by fixed point integer gives the same implementation and security.
- Notations:
 - The set of Boolean: $\mathbb{B} = \{0, 1\} \in \mathbb{Z}$
 - Security parameters: $n \in \mathbb{Z}^+, \alpha \in \mathbb{R}^+$
 - Modular Gaussian distribution: $\mathcal{D}_{\mathbb{T},\alpha} = N(0,\alpha^2) \mod 1$, Gaussian dist. over Torus.
 - $\mathbf{a} \in \mathbb{T}^n$, e(error, noise), $b \in \mathbb{T}$, $\mathbf{s} \leftarrow U(\mathbb{B}^n)(\text{Secret Key})$, $m(\text{plaintext}) \in \mathbb{T}$
 - \leftarrow : $x \leftarrow D$ means x itself or its entries or coefficients are drawn from D.
- TLWE ciphertext: $(\mathbf{a}, b) \in \mathbb{T}^{n+1}$

•
$$\mathbf{a} \leftarrow U(\mathbb{T}^n), e \leftarrow \mathcal{D}_{\mathbb{T},\alpha}, \mathbf{s} \leftarrow U(\mathbb{B}^n), b = a \cdot \mathbf{s} + m + e$$

- Since NAND takes Boolean inputs, the plaintext of TLWE should be Boolean.
 - Encode Boolean into Torus by $-\frac{1}{8}$ (representing 0) and $\frac{1}{8}(1)$.'
 - Decryption under this encoded message space uses a sign function.
- c_0, c_1 : TLWE input ciphertexts. $c_y = (\mathbf{0}, \frac{1}{8}) c_0 c_1$: The output.
 - The Torus plaintext of c_y is in $\{-\frac{1}{8}, \frac{1}{8}, \frac{3}{8}\}$.
 - Iff both ciphertexts encrypting $\frac{1}{8}$, $c_y = -\frac{1}{8} < 0$.
 - The decryption result of c_y becomes 0, iff both inputs are 1.

- Evaluating decryption function over ciphertexts.
 - Proposed by Gentry's Ph.D thesis in 2009.
 - By BOOTSTRAPPING, we can remove errors in ciphertexts.
 - We can evaluate more homomorphic operations after BOOTSTRAPPING.
 - All widely known FHE uses this idea.

The idea of constructing Bootstrapping in TFHE

- $\mathbb{T}_N[X]$: The ring of Torus coefficient polynomials $\operatorname{mod} X^N + 1$.
- Test Vector (of the sign function): $TV[X] = \sum_{i=0}^{N-1} \frac{1}{8} X^i \in \mathbb{T}_N[X]$
- Figure 5 shows the negacyclic behavior on $\mathbb{T}_N[X]$.
- The constant term of $X^{\lceil 2N \cdot (b-\mathbf{a} \cdot \mathbf{s}) \rfloor} \cdot TV[X]$ is the plaintext of (\mathbf{a}, b) .
 - Homomorphic evaluation of $X^{\lceil 2N \cdot (b-\mathbf{a} \cdot \mathbf{s}) \rfloor}$ is the key idea.

Figure 5: Negacyclic Rotation (N = 8)

https://nindanaoto.github.io/pdf/IMIKoen.pdf

The idea of homomorphic exponent evaluation (Blind Rotate)

- $\lceil 2N \cdot (b \mathbf{a} \cdot \mathbf{s}) \rfloor \approx \lfloor 2N \cdot b \rfloor \sum_{i=0}^{n-1} \lceil 2N \cdot a_i \rfloor \cdot s_i = \rho$
 - Now we can evaluate rounding without s.
- Because $\mathbf{s} \in \mathbb{B}^n$, we can evaluate $X^{\sum_{i=0}^{n-1} \lceil 2N \cdot a_i \rfloor \cdot s_i}$ by multiplexers.
 - Multiplying $X^{\lceil 2N \cdot a_i \rfloor \cdot si} =$ Select multiplying $X^{\lceil 2N \cdot a_i \rfloor}$ or not.
 - The multiplexer can be constructed by multiplication with s_i .

Algorithm 1 The idea of BLINDROTATE

Require: (a, b): TLWE, s: the secret key of TLWE,
$$TV[X] \in \mathbb{T}_N[X]$$

Ensure: $crot: X^{-\rho} \cdot TV[X]$
1: $crot \leftarrow X^{-\lfloor 2N \cdot cin.b \rfloor} \cdot TV[X]$
2: **for** $i = 0$ to $n - 1$ **do**
3: $//crot \leftarrow s_i?X^{\lceil 2N \cdot cin.a_i \rfloor} \cdot crot : crot$
4: $crot \leftarrow ((X^{\lceil 2N \cdot cin.a_i \rfloor} \cdot crot) - crot) \cdot s_i + crot$

- 1 The ciphertext for a Torus coefficient polynomial.
 - *crot* in algorithm 1 must be encrypted.
- 2 Homomorphic multiplication between a Boolean and a polynomial.
 - s_i have to be encrypted.
- **3** Homomorphic extraction of the constant term.
 - What we need as a result of Bootstrapping is TLWE.

- TRLWE: Torus Ring Learning With Error
 - Security parameters: $N \in \mathbb{Z}^+, \alpha_{bk} \in \mathbb{R}^+$
 - Secret key for TRLWE: $S[X] \leftarrow U(\mathbb{B}_N[X])$
 - Plaintext: $m[X] \in \mathbb{T}_N[X]$
- TRLWE ciphertext:

 $(a[X], b[X]) \in (\mathbb{T}_N[X])^2, a[X] \leftarrow U(\mathbb{T}_N[X]), b[X] = a[X] \cdot S[X] + e[X] + m[X]$

- TRGSW: Torus Ring Gentry-Sahai-Waters
- Supports multiplication with TRLWE as a Leveled HE.
 - TFHE uses this ciphertext to encrypt s.
 - In general, it can encrypt an integer polynomial.

- All ciphertexts in TFHE use Torus-based message spaces.
 - We want to encode s_i into Torus.
- Parameter (not security related): $Bg \in \mathbb{Z}^+$
- Scaling TRLWE by Bg and rounding into integer polynomials. $(\lceil Bg \cdot a[X] \rfloor, \lceil Bg \cdot b[X] \rfloor) \cdot \begin{pmatrix} \frac{s_i}{Bg} & 0\\ 0 & \frac{s_i}{Bg} \end{pmatrix} = (a^r[X], b^r[X])$ $\approx s_i \cdot (a[X], b[X])$ $b^r[X] - a^r[X] \cdot S[X] = s_i(b[X] - a[X] \cdot S[X] + e_r[X])$

- Adding a vector of TRLWE ciphertexts to encrypt.
- $(a_1[X], b_1[X]), (a_2[X], b_2[X])$ are encryption of 0.
- The result of the inner product with ciphertexts of 0 is a ciphertext of 0.
 - Adding the vector introduces more errors but not changes the result plaintext.

$$(\lceil Bg \cdot a[X] \rfloor, \lceil Bg \cdot b[X] \rfloor) \cdot \begin{pmatrix} \frac{s_i}{Bg} & 0\\ 0 & \frac{s_i}{Bg} \end{pmatrix} + \begin{pmatrix} a_1[X] & b_1[X]\\ a_2[X] & b_2[X] \end{pmatrix}] \approx$$

$$s_i \cdot (a[X], b[X]) + \lceil Bg \cdot a[X] \rfloor \cdot (a_1[X], b_1[X]) + \lceil Bg \cdot b[X] \rfloor \cdot (a_2[X], b_2[X])$$

- The max coefficient value of $\lceil Bg \cdot a[X] \rfloor$, $\lceil Bg \cdot b[X] \rfloor$ is Bg.
 - The bigger Bg means more errors in the resulting ciphertext.
- However, decreasing Bg means bigger rounding errors.
- DECOMPOSITION is the idea to avoid this trade-off.

Decomposition

- Parameter (not security related): $l \in \mathbb{Z}^+$
- Decomposition takes a TRLWE ciphertext as the input.
 - Returns $(\bar{a}_i[X], \bar{b}_i[X]) \in ((\mathbb{Z}/Bg)[X])^{2l}, i \in (1, l)$
 - The coefficients of $(\bar{a}_i[X], \bar{b}_i[X])$ are *i*th digits of (a[X], b[X]) in the base Bg.

$$(a[X], b[X]) \approx (\bar{a}_1[X], ..., \bar{a}_l[X], \bar{b}_1[X], ..., \bar{b}_l[X]) \begin{pmatrix} \frac{1}{Bg} & 0 \\ \frac{1}{Bg^2} & 0 \\ \vdots & \vdots \\ \frac{1}{Bg^l} & 0 \\ 0 & \frac{1}{Bg} \\ 0 & \frac{1}{Bg^2} \\ \vdots & \vdots \\ \vdots & \vdots \\ 1 \end{pmatrix}$$

https://nindanaoto.github.io/pdf/IMIKoen.pdf

The actual form of TRGSW

 \bullet We assume applying $\operatorname{DecomPosition}$ to the TRLWE ciphertext to be multiplied.

$$\begin{pmatrix} \frac{s_i}{Bg} & 0 \\ \frac{s_i}{Bg^2} & 0 \\ \vdots & \vdots \\ \frac{s_i}{Bg^l} & 0 \\ 0 & \frac{s_i}{Bg^l} \\ 0 & \frac{s_i}{Bg^2} \\ \vdots & \vdots \\ 0 & \frac{s_i}{Bg^l} \end{pmatrix} + \begin{pmatrix} a_1[X] & b_1[X] \\ a_2[X] & b_2[X] \\ \vdots & \vdots \\ a_l[X] & b_l[X] \\ a_{l+1}[X] & b_{l+1}[X] \\ a_{l+2}[X] & b_{l+2}[X] \\ \vdots & \vdots \\ a_{2l}[X] & b_{2l}[X] \end{pmatrix}$$

- Increasing *l* exponentially reduces rounding errors but linearly amplifies 0 ciphertexts errors.
- Increasing *l* means more polynomial multiplications.
 - The heaviest computation part in TFHE.

- The homomorphic constant term extraction can be divided into 2 parts.
- Notation:
 - TLWEIvI0: The n + 1 degree TLWE ciphertext. (Already introduced one.)
 - TLWEIvI1: The N + 1 degree TLWE ciphertext. (The secret key is different.)
- **1** Sample Extract Index: Convert TRLWE into TLWElvl1.
- 2 Identity Key Switching: Convert TLWEIvI1 into TLWEIvI0.

Sample Extract Index

- Careful look for the decryption of TRLWE gives the idea.
- The minus sign of the third term comes from the negacyclic property of $\mathbb{T}_N[X]$.

$$b[X] - a[X] \cdot S[X] = \sum_{k=0}^{N-1} [b_k - (\sum_{i+j=k, 0 \le i, j \le N-1} a_i \cdot S_j) - (\sum_{i+j=N+k, 0 \le i, j \le N-1} -a_i \cdot S_j)] X^k$$

- The idea is to fix k in the above formula.
 - Regard S (the vector of coefficients) as the key.
 - By setting k = 0, we can get the constant term.
 - (\mathbf{a}', b') : A TLWElvl1 ciphertext encrypting the kth coefficient.

$$b' = b_k$$
$$a'_i = \begin{cases} a_{k-i} & \text{if } i \le k \\ -a_{N+k-i} & \text{otherwise} \end{cases}$$

https://nindanaoto.github.io/pdf/IMIKoen.pdf

IdentityKeySwitching

- "Key Switching" means changing the secret key without decryption.
 - In general, "Key Switching" can evaluate linear function at the same time.
 - "Identity" means we evaluate the identity function in this case.
- The idea is to compute $b \mathbf{a} \cdot \mathbf{S}$ directly.
 - We can reuse the idea of Scaling and DECOMPOSITION.
- Notations:
 - Parameters: $base, t \in \mathbb{Z}^+$ (similar to Bg, l respectively.)
 - $IKSK_{ij}$: The TLWEIvI1 ciphertext encrypting $\frac{S_i}{base^j}$
 - \bar{a}_{ij} : *j*th digit of a_i in base *base*.

$$(0,b) - \sum_{i=0}^{N-1} \sum_{j=1}^{t} \bar{a}_{ij} \cdot IKSK_{ij}$$

Figure 6: Block diagram of HomNAND

- The security parameter of TFHE affects the performance.
 - Unlike conventional ciphers, there is relatively high motivation to cut off the security margin.
- Current de facto tool for security estimation is "lwe-estimator".
 - https://github.com/malb/lattice-estimator/
 - Supporting dual/hybrid attack (https://ia.cr/2020/515).
 - Missing RLWE specific attacks. (AFAIK)
- Estimating error rate of decryption after computations is also necessary.
 - To reduce n, N, we have to increase α, α_{bk} .
 - concrete-npe seems to be best one for TFHE. https://github.com/zama-ai/concrete-core/tree/main/concrete-npe

- Using MLWE (Increasing the dimension of TRLWE.) or NTRU.
 - Reducing the degree of polynomials. (Ease polynomial multiplications.)
- Programmable Bootstrapping.
 - Supports more sophisticated non-linear functions than NAND. (ex.: Full Adder, ReLU)
 - My paper about compound gates. (WAHC2021) https://doi.org/10.1145/3474366.3486927
- TLWE (or TRGSW) to TRGSW bootstrapping (called Circuit Bootstrapping)
 - We can use TRGSW's multiplication as a base operation.
- Scheme switching. (Switching between TFHE and other HEs without decryption.)
 - We can use a suitable scheme for different operations.

The list of open-source TFHE implementations

- TFHE: The original implementation. Deprecated.
 - https://github.com/tfhe/tfhe
- Concrete: The authors' Rust implementation. Supporting integer operations.
 - https://github.com/zama-ai/concrete.git
- OpenFHE: Supporting multiple HEs. Aims to support scheme switching.
 - https://github.com/openfheorg/openfhe-development
- FINAL: NTRU based TFHE.https://github.com/KULeuven-COSIC/FINAL
- MOSFHET: Supports key compression and automorphism Blind Rotate.
 - https://github.com/antoniocgj/MOSFHET
- TFHEpp: My implementation. Supporting Circuit Bootstrapping.
 - https://github.com/virtualsecureplatform/TFHEpp.git
- cuFHE: CUDA implementation.

• Forked ver.: https://github.com/virtualsecureplatform/cuFHE.git https://nindanaoto.github.io/pdf/IMIKoen.pdf

Boolean Circuit Evaluations

- Combinational circuit is the Directed Acyclic Graph(DAG) of logic gates.
 - We can use DAG-based job scheduling for evaluations.
 - ex.: Taskflow(https://github.com/taskflow/taskflow), StarPU(https://starpu.gitlabpages.inria.fr/)
- Sequential circuits can be divided by registers into combinational circuits.
 - Just copy the inputs of registers to the outputs at the end of the cycle.
- The netlist (DAG) of the circuit can be obtained by conventional synthesis tools.
 - ex.: Yosys(https://github.com/YosysHQ/yosys.git)

Speed on real environments

- As an example, here is the evaluation time for VSP.
- Equipped with 512 bytes ROM and 512 bytes RAM.
- Pipelining degrades performance if the number of worker is not enough.
- At the best case, we achieve around 1.25 Hz evaluation.

Machine	Pipelining?	# of cycles	Runtime [s]	sec./cycle
AWS c5.metal	No	936	2342.0	2.502
	Yes	1216	2773.0	2.280
AWS p3.16xlarge	No	936	1440.0	1.538
	Yes	1216	965.9	0.794

Table 1: Performance Evaluation Using Hamming

https://nindanaoto.github.io/pdf/IMIKoen.pdf

The list of open-source Boolean circuit evaluation frameworks

- HDL-based ones:
 - lyokan: https://github.com/virtualsecureplatform/Iyokan
 - Supports both CPU and GPU. CMUX Memory is integrated.
 - Sudachi: https://github.com/virtualsecureplatform/Sudachi
 - Taskflow based. Compound gates are supported.
- HLS-based ones:
 - Cingulta: https://github.com/CEA-LIST/Cingulata
 - Deprecated.
 - FHE Transpiler: https://github.com/google/fully-homomorphic-encryption
 - Actively developed. Using XLS as a HLS language.

Conclusion (Open questions)

- FHE is the holy grail but not the silver bullet.
 - The security only depends on the secret key.
 - Efficiency is generally lower than other privacy-preserving computing methods.
- Who is the winner of FHE?
 - Currently, CKKS is the mainstream because it is suitable for the private AI.
- How we can extend HE for multi-party settings?
 - There are few works about multi-key or threashold HEs.
- How we can resolve malleability?
 - Restricting possible computations is difficult.
 - Merging with verifiable computation? (Zero-knowledge proof)
- How about the hardware acceleration?
 - DARPA DPRIVE project